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Krasovskii damping problem for a multidimensional
control system of retarded type

A. Sh. Adkhamova
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

In [1], N. N. Krasovskii considered the damping problem for a control system with
aftereffect described by differential-difference equations of retarded type. He reduced
this problem to the boundary-value problem for a system of differential-difference
equations with the deviating argument in lower order terms. In [2], Krasovskii’s
problem was generalized to the case where a control system is described by an equation
of neutral type. In [3], a model with constant matrix coefficients and several delays
was considered, while [4] was devoted to that one with variable matrix coefficients
and several delays.

We consider the problem of bringing a linear non-stationary control system with
delay to an equilibrium state of, where the system is described by differential-difference
equations of retarded type with variable matrix coefficients and several delays.

The relationship between the variational problem for a nonlocal functional describ-
ing the multidimensional control system with delays and the corresponding boundary-
value problem for the system of differential-difference equations is established. The
existence, uniqueness, and smoothness of a generalized solution to this boundary-value
problem are proved.

This work is supported by the Ministry of Science and Higher Education of the
Russian Federation: agreement No. 075-03-2020-223/3 (FSSF-2020-0018).
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On realizations of dynamical systems

O.N. Ageev

Lomonosov Moscow State University, Moscow, Russia

Let T be a measure preserving dynamical system of the Lebesque space. The set
of all selfjoinings of T', i.e. the T x T-invariant measures with the standard marginals,
is one of the natural dynamical invariants of 7. While the joinings theory became
nowadays a powerful tool to study dynamical systems, the T' x T equipped with a
joining is not so well understood on its own. One of the first intriguing questions is
here to reveal what kind of general dynamical systems can be realized in this form.
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We claim that, for a typical T' x T-invariant measure, 7' x T is isomorphic to T' for
all but a meager subset of dynamical systems 7. This means that almost all joinings
are graphs. Applying mostly spectral invariants arguments, we try to calculate the
difference between T" and T x T in the case of joinings sitting on finitely many graphs.

On the solvability of radiative-conductive heat
transfer problems in systems of opaque and
semitransparent for radiation bodies

A. A. Amosov

National Research University “Moscow Power Engineering Institute,” Moscow, Russia

We give a review of the latest results on the unique solvability of stationary and
nonstationary radiative-conductive heat transfer problems in systems of opaque and
semitransparent for radiation bodies. Some of these results are published in [1-4].
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Multiple orthogonal polynomials with respect to
Hermite weights: applications and asymptotics

A.l. Aptekarev
Keldysh Institute of Applied Mathematics RAS, Moscow, Russia

The talk is based on the joint work [1] with S. Yu. Dobrokhotov, A. V. Tsvetkova
(Ishlinsky Institute for Problems in Mechanics RAS), and D. N. Tulyakov (Keldysh
Institute of Applied Mathematics RAS).

We start with the definition of the Hermite multiple orthogonal polynomials by
means of orthogonality relations. Then we present several recent applications, such as
eigenvalues distribution of random matrices ensembles with external field and Brow-
nian bridges. The main goal of the talk will be the asymptotics of this polynomial
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sequence when the degree of the polynomial is growing in the scale corresponding to its
variable (so-called Plancherel-Rotach type asymptotics). The starting point for our
asymptotical analysis is the recurrence relations for multiple orthogonal polynomials.
We will present an approach based on the construction of decompositions of bases
of homogeneous difference equations. Another approach, based on the semiclassical
asymptotics in the case of complex-valued phases, will be presented in S.Yu. Do-
brokhotov’s talk.

References

[1] Aptekarev A. I., Dobrokhotov S. I., Tulyakov D. N., Tsvetkova A. V. Plancherel-
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A posteriori estimates for obstacle problems

D. E. Apushkinskaya
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

Obstacle problems for elliptic and parabolic equations arising in various branches
of science and technology are well studied from the mathematical point of view.
These studies are mainly focused either on the existence of the unique minimizer or
on regularity properties of minimizers and respective free boundaries. A systematic
overview of these results can be found in [1,2].

In this talk, we will touch on another issue. We study the guaranteed bounds
of the difference between the exact solution (minimizer) of the corresponding varia-
tional problem and any function (approzimation) from the energy class satisfying the
prescribed boundary conditions and the restrictions stipulated by the obstacle. They
can be called estimates of deviations from the exact solution (or a posteriori estimates
of functional type). The estimates bound a certain measure (norm) of the error by
a functional (error majorant) that depends on the problem data and approximation
type, but do not explicitly depend on the exact solution. Hence the functional is fully
computable and can be used to evaluate the accuracy of an approximation. Within the
framework of this conception, the estimates should be derived on the functional level
by the same tools as commonly used in the theory of partial differential equations.
They do not use specific features of approximations (e.g., the Galerkin orthogonal-
ity) typical for a posteriori methods applied in mesh adaptive computations based
upon finite element technologies. Unlike the a priori rate convergence estimates that
establish general asymptotic properties of an approximation method, these a poste-
riori estimates are applied to a particular solution and allow us to directly verify its
accuracy.

We discuss such type estimates for the parabolic obstacle problem [3], for elliptic
and parabolic thin obstacle problems [3,4], as well as for elliptic biharmonic obstacle
problem [5]. The obtained estimates only depend on the approximate solution (which
is known) and on the data of the problem. We emphasise that they also do not need
knowledge on the exact coincidence set associated with the exact solution. The ob-
tained error majorants are non-negative and vanishes if and only if the approximation
coincides with the exact minimizer.



This work was supported by the Russian Fund of Basic Research, grant No. 20-
01-00630.
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Local regularity of weak solutions to a class of
strongly nonlinear parabolic systems

A.A. Arkhipova
St. Petersburg State University, St. Petersburg, Russia

We study regularity of weak solutions of quasilinear elliptic and parabolic sys-
tems with nondiagonal principal matrices and quadratic (strong) nonlinearities in the
gradient of additional terms.

Partial regularity problem for such systems is usually studied in the class of
bounded weak solutions under some smallness assumption for their L°°-norms.

In the case of scalar equations with quadratic nonlinearities in the gradient, regu-
larity problem was also studied in the class of bounded weak solutions. As is known,
the so-called “one-side condition” on the nonlinear term is enough to obtain a priori
estimate of the L°°-norm of a solution to the Dirichlet (the Cauchy-Dirichlet) prob-
lem. One can also obtain further regularity of the solution provided that all data of
the problem are smooth enough.

It appeared that the one-side condition guarantees boundedness but not further
smoothness of weak solutions of such boundary-value problems for the diagonal sys-
tems. It means that a singular set can appear in such situation. Certainly, weak
solutions of the nondiagonal systems also admit singularities. Moreover, the max-
imum principal does not hold for such systems, and one can not obtain a priori
estimate of the L* norm of weak solutions. The author started to study regularity of
weak (may be unbounded) solutions for nondiagonal systems with strongly nonlinear
terms under the one-side condition in [1-3]. Now we modified the proof and relaxed
smoothness assumption for the principal matrix up to the optimal one to study local
smoothness of weak solutions.
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Antisymmetrized Gelfand—Kapranov—Zelevinskij
systems

D.V. Artamonov
Lomonosov Moscow State University, Moscow, Russia

Consider the Lie group GL,(C) and the space of functions on this group. The
simplest example are matrix elements a] occuring at the intersection of ith row and
jth column. Using these function one can compose other functions, for example, the
following minors: a;, i, = det(a?)= 1117 k

These function satlsfy some relations (the so-called Plucker relations). Polynomials
in a;,,... s, that vanish under these relations form an ideal that we denote as Pl. In

the problems of the representation theory it is necessary to prove some equalities for
polynomials in a;, ... 4, that hold molulo PI:

fi(a) + ... + fm(a) = 0mod PL.

To do it, we chose the following strategy. We define the antisymmetrized Gelfand-
Kapranov—Zelevinskij system (A-GKZ for short) as the following system of PDEs for
a function F(a) of a;,

d
N/ Pl —)F(a) = 0.
ga) € Pl, g(=-)F(a)
Then
d d
fila) + ...+ fm(a) = 0mod Pl < f1( )—|— +fm( ) =0
for all solution of the A-GKZ system. Since one can only take the generators of the
ideal in the definition of the A-GKZ system, it turns out that the A-GKZ system

can be written explicitely as follows. For all possible indices ¢ < j < y and subsets
Y c {1,...,n} consider the following equations:

O*F 0*F N
Oay,. i—iiy0ar, i—ijyy 001, i-i5y001,. iiiyy
O*F
+ =0.

dan,...i—iy,y0a1,. i—iijy



Removing the last term, we arrive at the system

9*F O%F 0
_ —0,
dai,.i—iiy 001, i—igyy 001, i—ijv0a1, i—iiyy

which is an example of the original Gelfand—Kaparnov—Zelevinsly hypergeometric
system. We explain in the talk how one can explicitely construct the solution space of
the A-GKZ system using solutions of the GKZ system, and also how this construction
helps to solve the original problems in the representation theory.

References

[1] Artamonov D. V. Antisimetrization of the Gelfand-Kapranov—Zelevinskij systems,
J. Math. Sc., 255, No. 5, 535-542 (2021).

Solvability of an operator Riccati integral equation
in a reflexive Banach space

N. V. Artamonov
MGIMO University, Moscow, Russia

If X2 are Banach spaces, then by £(X;, X2) we denote the space of all bounded
operators acting from X; to Xs. By Cs(Z; £(X7,X2)) we denote the space of all
strongly continuous operator functions on the segment Z = [0,7] with topology of
the strong uniform convergence.

An operator function {U; s }o<s<i<r on a Banach space is called forward (in time)
evolution familyif Uy = I and Uy o = Us ,U, s for all0 < s <r <t <T. An operator
function {V; : Jogcs<t<r on a Banach space is called backward (in time) evolution family
ifViy=TIand Vyy =V, Vpy forall 0 < s <r <t <T. An evolution family is called
strongly continuous if it is strongly continuous in ¢ (for s fixed) and in s (for ¢ fixed).

Let X be a reflexive Banach space with duality pairing (f,z) (x € X, f € X*). If
Ay € L(X, X*), then, taking into account the canonical isomorphism between X and
X**, one can consider the adjoint operator A} as an element of £(X, X*). An operator
Ap € L(X, X™*) is self-adjoint if Ay = A}. A self-adjoint operator A; € L(X, X*) is
non-negative if (Ayz,z) > 0 for all x € X.

Analogously, if Ay € L(X*,X), then we have A € L£(X* X). An operator
Ay € L(X*,X) is self-adjoint if Ay = A5. A self-adjoint operator Ay € L(X*, X) is
non-negative if (z, Asx) > 0 for all x € X.

Note that if U;  is a strongly continuous evolution family in a reflexive space X,
then Vi = Uy is a strongly continuous backward evolution family in X*.

Theorem. Let X be a reflexive Banach space and the following assumptions hold:

1. {Us,stogsse<r 8 a strongly continuous and uniformly bounded forward evolution
family in £(X). Then Vs, = U is also a strongly continuous and uniformly
bounded backward evolution family in L(X*);

2. C € Cy(T; L(X, X*)) and B € Cs(T; L(X*, X));
3. Ct)=C*(t) 20 and B(t) = B*(t) 2 0 for allt € T.

10



Then for all self-adjoint non-negative operators G € L(X, X*) the (backward) integral
Riccati equation

T

P(t) = Vi rGUr, +/ Vi.s{C(s) — P(s)B(s)P(s)}Usds
¢

has a unique self-adjoint non-negative solution P € Cs(T; L(X, X™)).

Some applications to the system of linear forward-backward evolution equations

)\ [ At)  —B@)\ (z(t) z(0) = o
<y'<t>> - (—c<t> —A*(t)) <y<t>> 1) = oy E0T]
and the mean-field game system of PDEs will be given.

References

[1] Artamonov N. Solvability of an operator Riccati integral equation in a reflexive
Banach space, Differ. Equ., 55, No. 5, 718-728 (2019).

The second order of accuracy difference schemes
for integral type time-nonlocal parabolic problems

A. Ashyralyev
Bahcesehir University, Istanbul, Turkey;
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia;
Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

C. Ashyralyyev
Gumushane University, Gumushane, Turkey;
National University of Uzbekistan, Tashkent, Uzbekistan

In paper [1], unique solvability of the nonlocal problem
‘3—’;+A;L=f(t), 0<t<T,

u(0) = Ofa(s)Bu(s)ds + ¢

(1)

for a parabolic equation in a Hilbert space H with self-adjoint positive definite oper-
ators A and B is studied.

In paper [2], the first order accuracy difference scheme and the Cranck—Nicolson
difference scheme for approximate solution of problem (1) are investigated.

In this talk, the second order accuracy difference schemes for approximate solu-
tion of the problem are studied. Theorems on stability of the two difference schemes,
namely, the r-modified Cranck—Nicolson difference scheme and the second order ac-
curacy difference scheme involving the A2 term, are established. (see [3]). Numerical
calculations for both difference schemes are carried out and illustrations with com-
puter results are demonstrated.
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Second-order ntegro-differential equation
with difference kernels and inhomogeneity
in the linear part

S.N. Askhabov
Chechen State Pedagogical University, Kadyrov Chechen State University, Grozny, Russia

In connection with applications to the theories of filtration, shock waves, heat
exchange, and others (see [1-3]), the solvability of the nonlinear integro-differential
equation

u*(x) = [ hz —t)'()dt + | k(z — )" (O)dt + f(z), >0, a>1, (1)
/ /

is considered.
We look for solutions of equation (1) in the class

Qi = {u(a:) :u € C?(0,00), u(0) ='(0) =0 and u(z) > 0 for = > O} .

Throughout what follows, the kernels h € C?[0,00), k € C3[0,00) and the inho-
mogeneity f € C2[0,00) are assumed to satisfy the following conditions:

1. h”(z) nondecreasing on [0, 00), h(0) = A'(0) = 0, and A" (0) > 0;
2. k"'(z) nondecreasing on [0,0), k(0) = k¥’(0) = k”(0) = 0, and k"(0) > 0;

) fla=b/e(g)
3. f(z) nondecreasing on [0,00), f(0) = f'(0) =0, and sup ————— < 0.
0<z<b x

Since equations of form (1) are explicitly solvable only in few particular cases,
we see that both for the theory and applications, the development of approximate
methods for equations of this type is of great importance.

The report will present new a priori bounds for solutions of equation (1). Using
these bounds enables us to prove by weighted metrics method the existence and
uniqueness of a solution of integro-differential equation (1) and to define the precise
boundaries of the solution. We show that the solution may be obtained by the method
of sequential approximations for which the error bound and that of the degree of
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their convergence to the precise solution are given. In the case of Lebesgue spaces,
convolution-type equations with monotone nonlinearity were studied in [4].

This work was supported by the State contract of the Russian Ministry of Educa-
tion and Science (contract FEGS-2020-0001).
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Smooth solution of the second initial-boundary
value problem for a parabolic system
in a nonsmooth domain on the plane

E. A. Baderko
Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State
University, Moscow, Russia

M. F. Cherepova

National Research University “Moscow Power Engineering Institute,” Moscow, Russia

We consider the second initial-boundary value problem for one-dimensional (with
respect to the spatial variable) second-order Petrovsky parabolic systems with vari-
able coefficients in a semibounded domain 2 with nonsmooth lateral boundary which
admits, in particular, cusps. A solution to the problem in the class %’2’1(5) is con-

structed by applying the boundary integral equation method. This solution has the
form of a special parabolic potential.

References
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[2] Baderko E.A., Stasenko A.A. Smooth solution of the second initial-boundary
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on the plane, Comput. Math. Math. Phys., 62, No. 3, 382-392 (2022).
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Analysis and numerics for (non)local models and
differential forms with Lavrentiev gap:
beyond regularity

A. Balci
Bielefeld University, Bielefeld, Germany

Lavrentiev gap is the key phenomenon in calculus of variations to study many
properties of problems with general growth. It leads to many challenges in analysis
and numerics such as non-density of smooth functions and disconvergence of numer-
ical methods. We present new density results and examples on Lavrentiev gap for
general classes of differential forms and non-local models using fractal contact sets.
We also construct examples for the general classes of non-local problems and design
the finite element scheme to study numerically so-called W-minimizers for such kind
of problems.

This talk is based on several joint works with Lars Diening, Moritz Kassmann
(Bielefeld), Mikhail Surnachev (Keldysh Institute of Applied Mathematics, Moscow),
Johannes Storn (Bielefeld) and Christoph Ortner (UBC, Vancouver).

Stationary spherically symmetric solutions of the
Vlasov—Poisson System depending on local energy

J. Batt

Mathematisches Institut der Universitat Miinchen, Miinchen, Germany

E. Jorn

Mathematisches Institut der Universitat Munchen, Munchen, Germany

A. L. Skubachevskii
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

We consider the Vlasov—Poisson system of equations in the three-dimensional case,
modelling distribution of gravitating matter in stellar dynamics. A stationary spher-
ically symmetric solution of this system is a triple (f, p, U) of the following functions:
the distribution function f = f(r,u), the local density p = p(r), and the Newtonian
potential U = U(r), where r = |z|, u = |[v|, (z,v) € R3 x R? are the space-velocity
coordinates. In this lecture we consider the following problem: for a given function
p = p(r) we obtain sufficient conditions for p to be “extendable,” which means that
there exists a stationary spherically symmetric solution (f, p, U) of the Vlasov—Poisson

2

system with f depending on the local energy F := U(r) + % such that p = p, see [1].
A proof is based on the reduction of this problem to Eddington’s equation.

This work was supported by the Ministry of Education and Science of the Russian
Federation within the state assignment No. 075-03-2020-223/3 (FSSF-2020-0018).

14



References

[1] Batt J, Jorn E., Skubachevskii A. L. Stationary spherically symmetric solutions of
Vlasov—Poisson system in the three-dimensional case, Dokl. Math., 102, 265-268
(2020).

Probabilistic representation of a solution to the
Cauchy—Neumann problem for a nonlinear
parabolic equation

Ya. |. Belopolskaya

Sirius University, Sochi, Russia

Consider the Cauchy—Neumann problem for a nonlinear parabolic equation

WD) 19> (A, ot )t )] + el o =)t )t ), (1)

v(0,y) = vo(y), div(AA™)(y,[p*v])l(t,y)) - n=0, ye€IG.

in the half-space G = R4 with boundary OG = {x4 = 0} and an outer normal vector
n(x). Herep is a molhﬁer [p*v](t,y) fRd p(y — x)v(t,x)dx, and - denotes the inner

product in R?. Consider the stochastic system

0E(t) = A(E(0), [p * v(t, CONdw(t) — xoo (E(0)n(E®)dR(2), @
€0) = €0, k(0) =0,
o(ty) = B [,o(y ~E(t))eap { | etetolo v](s,as))ds” , 3)

where xag () is the characteristic function of OG, w(t) € RY is a Wiener process, a
random variable &y does not depend on w(t), P(& € dy) = vo(y)dy, and k(t) is the
local time.

Theorem 1. Let A(z,v) € RE@R?, c(z,v) € R be szschztz continuous and bounded.
Then there exists a solution (£(t),k(t),v(t,y)) of (2) and (3), and the function v
defined by (3) is a weak solution of (1).

To prove this assertion, we apply an approach developed in [1]. Namely, we
construct a special extension of (2), (3) to a stochastic system in R? using a map
I : C([0,T);RY) — C([0,T;;RL), T(¢) = &, called the Skorokhod map. In R? we
derive an alternative stochastic system giving rise to a stochastic process §~ (t) such
that characteristic functions of £(t) and £(t) are equivalent (see [2]). This allows us
to construct a probabilistic representation of a weak solution of the Cauchy problem
for the extended PDE. As a consequence, we can verify that a weak solution to (1) is
constructed in this way.

The work was partly supported by the Sirius university and by the RSF grant
22-21-00016.
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On some examples of stationary solutions to the
Vlasov—Poisson equations in a finite cylinder

Ju. Belyaeva
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

B. Gebhard
Universitat Leipzig, Leipzig, Germany

A. L. Skubachevskii
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

The Vlasov—Poisson equations in domains with a boundary describe the kinetics
of charged particles of high-temperature plasma in controlled thermonuclear fusion
devices. Mixed problems for the Vlasov—Poisson system for a two-component plasma
in cylindrical domains in particular describe the kinetics of charged particles of high-
temperature plasma in a “mirror trap.” We consider the Vlasov—Poisson system
for two-component high-temperature plasma in a finite cylinder. We construct the
stationary solutions corresponding to a plasma confined in a “mirror trap.” The
supports touch the boundary of the domain only in two small prescribed discs at the
top and the bottom of the cylinder.

This work is supported by the Ministry of Science and Higher Education of the
Russian Federation, agreement No. 075-03-2020-223/3 (FSSF-2020-0018).
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From crystals to Dirac operators spectral theory
M. Ben-Artzi

Hebrew University of Jerusalem, Jerusalem, Israel

We consider constant coefficient first-order partial differential systems, homoge-
neous and non-homogeneous, and their potential perturbations. It is assumed that
the homogeneous part is strongly propagative. In the non-homegeneous case it is
assumed that the operator is isotropic. The spectral theory of such systems and
their potential perturbations is expounded, and a Limiting Absorption Principle is
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obtained up to thresholds. Special attention is given to a detailed study of the Dirac
(massive and massless) and Maxwell operators.

The estimates of the spectral derivative near the thresholds are based on trace
estimates on the slowness surfaces. Two applications of these estimates are presented:

1) Global spacetime estimates of the associated evolution unitary groups, com-
monly viewed as decay estimates. While analogous estimates exist for the Dirac
operator, our decay estimates for the Maxwell system are completely new.

2) The finiteness of the eigenvalues (in the spectral gap) of the perturbed Dirac
operator is studied under suitable decay assumptions on the potential pertur-
bation.

This is joint work with T. Umeda (Japan).

Multiple hypergeometric functions and applications

S.I. Bezrodnykh

Federal Research Center “Computer Science and Control” of the RAS, Moscow, Russia

Hypergeometric functions in several variables z = (z1, 22, ..., zx5) € C" considered
in the talk are defined with the help of the following N-multiple series [1]:

k

oN)(L,g 2 Z H : 1)

[k|=07=1 Zs 1>‘uk +%)k'

Here k = (k1,...,ky) is the multi-index, ks € ZT, |k| := Zil ks, 2% = zfl . szN,
kl:=Fki!---knl; L={Xs;} is an integer (N x M)-matrix whose elements satisfy the
relations Z;Vil Asj=-1,s=1,N;g= (7,...,7u) € CM is a vector parameter,
and ['(z) is the gamma function. The series in formula (1) belong to the Horn class
of hypergeometric series, see [1,2].

The research presents an approach to obtaining formulas for the analytical contin-
uation of series (1) by variables z to the whole complex space C¥ in the form of linear
combinations ®™)(z) = 3 A,,u.(z), where u,,(z) are hypergeometric series of the
Horn type satisfying the same system of partial differential equations as series (1), and
A, are some coefficients. The implementation of this approach is demonstrated by
the example of the Lauricella hypergeometric function F ](DN). This function is defined
in the unit polydisk UN := {|z;| <1, j =1, N } by the following series [3]:

— (D) (a1)ry -~ (an)k
Y ajb, c; z) := (®) . Nk, 2
R @
Here the complex values (a1,...,an) =: a, b, and ¢ play the role of parameters,

¢ ¢ Z~, and the Pochhammer symbol is defined as (a),, := I'(a+m)/T'(a). A
complete set of formulas for the analytical continuation of series (2) for an arbitrary
N is constructed in [4].
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We then apply the obtained results on the analytic continuation of the Lauricella
function F[(,N) to the effective solution of the parameter problem for the Schwarz—
Christoffel integral in the crowding situation, and to the computation of conformal
maps of polygonal domains of complex shape.

The work is supported by the Russian Science Foundation (Proj. No. 22-21-00727).
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Shadowing property re(al)visited
M. L. Blank

Institute for Information Transmission Problems RAS (Kharkevich Institute);
National Research University “Higher School of Economics”, Moscow, Russia

When modeling a time-evolving process, we obtain its approximate realizations.
This proximity is due to several reasons. First, we never exactly know the description
of the process itself, and second, the presence of various kinds of errors from purely
random to rounding errors when implemented on a computer are inevitable. The
question of the adequacy of the simulation results is primarily associated with the
presence of a real trajectory of the process under study in the vicinity of the obtained
realization over the longest possible time interval. This question is especially nontriv-
ial in the case of a chaotic system, since for such systems close trajectories diverge
very quickly (often exponentially fast).

At the level of connections between individual trajectories of a hyperbolic sys-
tem and the corresponding pseudo-trajectories!, this problem was first posed by
D. V. Anosov [1] as a key step of the analysis of structural stability of diffeomor-
phisms. A similar but much less intuitive approach called “specification” in the same
setting was proposed by R. Bowen [2]. Informally, both approaches ensure that errors
do not accumulate during the process of modeling: in systems with the shadowing
property, each approximate trajectory can be uniformly traced by a true one for an ar-
bitrary long period of time. Naturally, this is of great importance in chaotic systems,
where even an arbitrary small error in the starting position lead to (exponentially in
time) large divergence of trajectories.

Further development demonstrated that for a diffeomorphism the shadowing prop-
erty implies the uniform hyperbolicity. To some extent, this limits the theory of
uniform shadowing to an important but very special class of hyperbolic dynamical

1 Approximate trajectories of a system under small perturbations.
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systems. The concept of average shadowing introduced in [3] about 30 years ago gave
a possibility to extend significantly the range of perturbations under consideration in
the theory of shadowing, in particular to be able to deal with perturbations which
are small only on average but not uniformly.

The most notorious in the variety of obstacles in the analysis of the shadowing
property is that one needs to take into account an infinite number of independent
perturbations of the original system. This makes the problem highly nonlocal. It
is therefore very desirable to reduce the shadowing problem to the situation with a
single perturbation, albeit with tighter control of the approximation accuracy.

To realize this idea, we developed in our recent paper [4] a fundamentally new
“gluing” construction consisting in the effective approximation of a pair of consecutive
segments of true trajectories.

We restrict ourselves to discrete time dynamical systems, leaving the extension
of our approach to continuous time systems (flows) for future research. A discrete
time dynamical system is completely defined by a map T : X — X, not necessarily
invertible, from a metric space (X, p) into itself.

A trajectory of the map T starting at a point x € X is a sequence of points
Z:={..,2_9,2_1,%0,%1,%2,...} C X, for which xg = x and Tz; = x;41 for all
available indices i.

A pseudo-trajectory of the map T is a sequence of points ¢ := {..., y_2, y_1, Yo,
Y1, Y2, ...} C X, for which the sequence of distances {p(Ty;, yi+1)} for all available
indices i satisfies a certain “smallness” condition.

Given € > 0, we say that a pseudo-trajectory ¥ is of

(U) wniform type if p(Ty;, yi+1) < € for all available indices i.

n
(A) small on average type if lim sup ﬁ S p(Tyi,yiv1) < e.
n—00 i=—n

The idea of shadowing in the dynamical systems theory boils down to the following
question: is it possible to approximate pseudo-trajectories of a given dynamical system
by true trajectories? Naturally, the answer depends on the type of the approximation.

We say that a true trajectory & shadows a pseudo-trajectory ¢ with accuracy ¢
(notation d-shadows):

(U) wuniformly if p(z;,y;) < 0 for all available indices 7.

n
(A) on average if liﬁsolip ﬁ lzn plx,yi) <90.

We say that a DS (T, X, p) satisfies the (o + f)-shadowing property (notation
T € S(a,B)) with a € {U, A, A", R}, 8 € {U, A} if V6 > 0 Je > 0 such that each
e-pseudo-trajectory of a-type can be shadowed in the g sense with the corresponding
accuracy 0.

We say that a trajectory Z glues together semi-trajectories Z, if with accuracy rate
@ Z — Ry strongly if

In other words, Z approximates both the backward part of & and the forward part of
i with accuracy controlled by the rate function .
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We say that the DS (T, X, p) satisfies the gluing property with the rate-function
¢ : Z — R (notation T € G(y)) if for any pair of trajectories Z, ¢ there is a trajectory
Z gluing them at time ¢t = 0 with accuracy ¢ in the strong/weak sense.

Our main result is the following statement.

Theorem 1. Let T : X — X be a map from a metric space (X, p) into itself, and let
T € G(p) with >, ¢(k) < oco. Then T € S(U,U)US(A, A).

Now we are going to demonstrate our approach for some important classes of
dynamical systems (in particular, for non-invertible and discontinuous ones).

Example 1 (Affine mapping). Let X := R? with d > 1 with the euclidean metric p,
A be a d x d matrix, and a € R%. Then Tz := Az +a € S(U,U)US(A, A) if and only
if B = @ and either £ = & or E* = @.

Here E°, E%, E*, E™ are linear subspaces of R?, corresponding to the zero eigen-
value of A, the remaining contracting part of A, the expanding part of A, and the
neutral part (corresponding to the eigenvalues of modulus 1).

Example 2 (Anosov diffeomorphism). Let X := T? be a unit 2-dimensional torus
and let T : X — X be a uniformly hyperbolic diffeomorphism. Then T € S(U,U) U
S(A,4).

Example 3 (Nonuniform hyperbolicity). We set X := [0,1], o, 8 > 0, 0 < ¢ < 1,
and
T (1 + azx®) ifx <e,
T -1 —-2)(1+b(1-2)8) ifr>ec

Then T € S(U,U)US(A, A) iff 0 < a, 8 < 1 and ¢(1 +ac®) = (1 —c)(1 +b)° =1.
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Mathematics for immunology

G. A. Bocharov

Marchuk Institute of Numerical Mathematics, RAS, Moscow, Russia

D.S. Grebennikov
Institute of Computer Science and Mathematical Modelling, Sechenov University,
Moscow, Russia

R.S. Savinkov
Institute of Computer Science and Mathematical Modelling, Sechenov University,
Moscow, Russia

Immune system functions to protect the host organisms against life-threatening
infections. Modern research in immunology is characterized by a tremendous rise
of data characterizing its functioning on multiple levels of detail. Mathematics pro-
vides the analytical tools for representing the immune system structure, identifying
the regulation principles and predicting the immune response to perturbations of the
host antigenic homeostasis [1-3]. In addition to traditional approaches based on rep-
resenting the population dynamics of cells and molecules with systems of ordinary-,
functional-, or partial differential equations, the emerging integrative analysis consid-
ers the methods of graph theory, stochastic processes, and artificial neural networks.
We discuss a number of recent applications of various mathematical tools in immunol-
ogy. These include

(i) the graph-type model of the human lymphatic system;

(it) computational geometry methods to model the lymph node structure at high
spatial resolution;

(#41) neural network-based approximation of the lymph node drainage function;

(tv) Markov chain Monte Carlo-based stochastic modelling of virus life cycle (HIV-1,
SARS-CoV-2) to identify the target for therapy.

Finally, some theoretical foundations of immunology are discussed, e.g., the “bal-
ance of growth and differentiation” concept of the immune system response to anti-
genic perturbation as proposed by Grossman and Paul [4]. Modelling arguments are
presented that it can be consistently linked to the Sobolev norm of the cumulative
viral load function.

This work was supported by the grants of the Russian Science Foundation (18-11-
00171) and the Russian Foundation for Basic Research (20-04-60157; 20-01-00352).
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Inverse optimal control problems and application
to modeling the gait of cerebral palsy patients

H. G. Bock
Heidelberg University, Heidelberg, Germany

We present numerical methods solving inverse optimal control problems as com-
plex bi-level dynamic optimization problems: a nonlinear approximation problem on
the upper level and a nonlinear optimal control problem (OCP) with discontinuities
and mixed path-control constraints on the lower level. The OCP solution can be
considered as a model that describes autonomous optimal processes in nature such
as human gait. However, the optimal control model includes unknown parameters
that need to be determined by fitting its solution to measurements in the upper level
optimization. We develop a direct mathematical all-at-once approach for solving this
new class of problems and apply this to derive biomechanical optimal control models
for the gait of cerebral palsy patients from real-world motion capture data obtained
by the Motion Lab of the Orthopedic University Hospital Heidelberg.

Hyperbolization for nonlinear Schrodinger type
equations

Ya. L. Bogomolov
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia

A. D. Yunakovsky
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia

Some nonlinear Schrodinger-type equations are considered. They describe various
processes in optics, plasma physics, hydrodynamics, biophysics, etc. Sometimes these
problems require large time intervals or small time steps in the numerical implemen-
tation. To avoid these difficulties, a hyperbolization procedure is applied. Adding
the second derivative of an unknown function in time with a special small parameter
allows us to create three-layer explicit numerical schemes possessing better stability
in comparison with the classical ones. In its turn, this fact allows us to increase a
time step. A further advantage is obtained by using an additional damping term
connected with the above-mentioned small parameter. The additional terms act as
regularization procedures smoothing out non-physical numerical effects.

Two ways of implementation of the hyperbolization procedure are suggested. One
of them is based on the spectral operator replacements, where an approximate solution
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is obtained by means of the consecutive operator substitutions in the small intervals.
In fact, this algorithm is the splitting procedure on physical processes. The proposed
algorithm provides continuity of a solution and its derivative in time. The other one
employs the conservative unknown functions (field and flow). In the non-divergent
case, it is necessary to introduce the third unknown function (the nonlinearity term).

In the case of an unbounded operator, it is necessary first to make transition to a
bounded operator or to a semibounded one (which is possible).

The most interesting question is how close the “hyperbolized” solution is to the
original one. The damping term improves this problem essentially.

On index of elliptic boundary-value problems
associated with isometric group actions

A. V. Boltachev
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

A. Yu. Savin
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

Let M be a smooth compact manifold with boundary X. We suppose that M
is endowed with a Riemannian metric. In a neighborhood of the boundary we use
local coordinates x = (2/, x,) on M, where dimM = n, 2’ = (z1,...,2,-1) are local
coordinates on X, and the boundary is locally defined by the equation x,, = 0, while
M 1is defined by the inequality x,, > 0. We fix a Riemannian metric on M.

Let us consider Boutet de Monvel operators of zero order and type. We write such
operators as follows:

L2(M) L2(M)
[ A+G O .
D= ( B Ax > : L2e(9X) — L;(BX) , (1)

where

e A is a classical zero-order pseudodifferential operator (¢¥DO) on M whose com-
plete symbol satisfies the transmission property;

e Ax is a zero-order DO on X;

e B,C, and G are boundary, coboundary, and Green operators, respectively (or
trace, potential, and singular Green operators in the terminology of Boutet de
Monvel [1]).

Let us denote the algebra of matrices (1) by W5(M) C B(L*(M) & L?*(X)) and
let T be a discrete finitely generated group of isometries v: M — M preserving the
boundary, v(X) = X.

Given v € I', we define the shift operator

Ty X(M)& LX) — LAM)S L*(X),  (u(2),v(z') — (u(y™! (), v(y~" ("))
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Elements {D,}, . in the smooth crossed product (see [2]) Wp(M) x I' define the
operators

{D}oer VY DTy (M) @ L*(X) — L*(M) & L*(X). (2)
yel’

Operators in (2) are called T'-Boutet de Monuvel operators.

We define the conditions under which I'-Boutet de Monvel operators are elliptic
and give the index formula for elliptic I'-Boutet de Monvel operators.

This work was supported by Russian Foundation for Basic Research (grant No. 21-
51-12006).
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Weak superposition principle for signed
measure-valued solutions of the continuity equation

P. Bonicatto
University of Warwick, Warwick, Great Britain

N.A. Gusev

Moscow Institute of Physics and Technology, Moscow, Russia

Given a bounded Borel vector field b (possibly non-autonomous), we consider
the associated continuity equation for a time-dependent family of signed Borel mea-
sures {ut}s. It is well known that if these measures are non-negative, then they can
be represented as a superposition of Dirac deltas, concentrated along the integral
curves of b. This result, known as the superposition principle, was extended to signed
measure-valued solutions in [1] under additional assumptions on the regularity of b.
We explicitly show that without additional assumptions on b the superposition does
not hold for generic signed measure-valued solutions, even in the one-dimensional set-
ting. By relaxing the notion of the integral curve we establish a weak version of the
superposition principle, which is valid in the one-dimensional setting without any fur-
ther assumptions on b. We also discuss the relation between the weak superposition
principle and uniqueness of the solutions of the initial-value problem.
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On operator estimates for elliptic operators
in perforated domains

D. 1. Borisov
Institute of Mathematics, Ufa Federal Research Center, Ufa, Russia

A.l. Mukhametrakhimova
Bashkir State Pedagogical University, Ufa, Russia

We consider the boundary value problem for a second order scalar differential
operator H. with variable coefficients in a multi-dimensional domain €). finely per-
forated by small holes distributed along a given manifold S inside 2. The size of
the holes and the distances between them are controlled by a small parameter ¢; the
union of the holes is denoted 6°. The perforated domain (). is obtained from € by
removing the holes #°. The shapes of the holes in 6° are arbitrary as well as their
distribution along the manifold. The equation we consider in €2, reads as

Za Zry +ZAJ36 +Ao—Afue=7f

3,7=1

for a given complex parameter A and a given function f € L2(€2:). On the external
boundary of the domain we impose the Dirichlet condition, while the boundaries of
small holes are subject either to the Dirichlet condition or to a nonlinear Robin con-
dition. We consider various cases leading to various homogenized problems. These
problems are for the same differential equation but subject to some homogenized con-
dition on the manifold S. Our main result provides the estimates for the convergence
rates and the main feature is that these estimates are uniform with respect to the
function f on the right hand side.

The research was supported by Russian Science Foundation, project No. 20-11-
19995.

Integrable polynomial Hamiltonian KdV—-Novikov
hierarchies and their quantization

V.M. Buchstaber

Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia

In the first part of the talk, we will discuss finite-dimensional integrable polyno-
mial Hamiltonian hierarchies associated with Novikov’s equations for the Korteweg—de
Vries hierarchy. The corresponding Poisson brackets and the complete set of polyno-
mial Hamiltonians will be explicitly described.

The well-known construction of the KdV hierarchy is the reduction of the hierarchy
on a free associative algebra of an infinite number of variables.

In the second part of the talk, we will give an explicit description of the noncom-
mutative versions of Novikov’s equations and their first integrals. The hierarchies on
a free associative algebra of 2N variables (N = 1,2,...) will be obtained. Using the
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examples of N = 1,2, and 3, we will show the general method of quantization ideals
introduced recently by A. V. Mikhailov. In our case, we have a two-sided ideal that
is invariant with respect to the noncommutative Nth Novikov’s equation. The factor
over this ideal defines a dynamical system on an associative algebra of 2N variables
with an additive Poincaré-Birkhoff-Witt basis.

In the third part of the talk, we will describe an invertible polynomial transfor-
mation of a free associative algebra of 2N variables that allows us to pass from the
Poisson bracket in C?V to commutators. As a result, we obtain N-quantum Novikov’s
equations and quantum hierarchies in accordance with the Heisenberg approach. The
corresponding operator representation of explicitly given quantum Hamiltonians will
be presented.

The talk is based on the results obtained jointly with A. V. Mikhailov.
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Weak solutions of boundary value problems
for general quasilinear PDEs

V. P. Burskii

Moscow Institute of Physics and Technology, Moscow, Russia

Let  C R™ be an arbitrary domain with boundary 09Q, £L = Y aq(x)D*
la]<m
be some differential operation with smooth complex j x k-matrix coefficients a,(z),
and Lt be the formally adjoint differential operation. Let Lo, Lj be the minimal
operators. M. Vishik introduced the conditions

the operator Lo : D(Lo) — L3(Q) has a continuous left-inverse, (1)
the operator L : D(LT) — L4(Q) has a continuous left-inverse (2)

and proved that these conditions are necessary and suffucient for the existence of a
solvable extension Lp : D(Lg) — L4(Q) (i.e. D(Ly) C D(Lp), ILG' : Ly(Q) —
D(Lg)). L. Hérmander proved the fulfillment of these conditions for any scalar oper-
ator with constant coefficients in a bounded domain. For the case of scalar operators

L(z,D) = P’(D) + Y _ Ci(x)P'(D), C; € C*(Q), P' € C[¢] (3)

of the real principal type with ord P! < m — 1,|VP?(€)] # 0 if € # 0, and also for
the case of constant strength operators of form (3) with P < P and analytical C?,
conditions (1), (2) follow from results by G. Gudmundsdottir.
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We consider the equation

LYALu=f (4)

with some continuous (linear or nonlinear) operator A : L}(Q) — L}(Q).

A function u € D(Lg) satisfying the integral identity < ALgwu, Lv >=< f,v >
for each function v € (C§°(2))*, is called a generalized solution of the Dirichlet
problem in  for equation (4) with f € D’(Ly). This is equivalent to the equation
LyALou = f. The Dirichlet problem is called well-posed if there exists a continuous
inverse operator M : D'(Lg) — D(Lg) to the operator L{ALq. Let P : L}(2) — ImL,
denote the orthoprojector.

Statement. The generalized Dirichlet problem for equation (4) is well-posed if and
only if condition (1) is fulfilled and the operator PA : Im Ly — Im Lg is a homeomor-
phism.

Example. Let £ = 00 = 9?/0x10x2, A be the Nemytsky operator given by (Au)(z) =
©(x, |u]) u, where the function ¢ is bounded, satisfies the Caratheodory condition and
o(x,t)t — p(z,s)s = m(t —s) for t > s,m > 0. Then condition (1) is fulfilled in any
bounded domain and the Dirichlet problem for the equation JAOu = f is well-posed.
If the smooth boundary does not contain segments of characteristics, then the relation
u € D(Lg) means u|gg = u,|aq = 0 almost everywhere on 9. Instead of O, one could
consider any other scalar operator with property (1) and obtain the same conclusion.

In these considerations we use ideas and arguments of H. Gajewski.
The setting of other boundary value problems are analogous.

Subordination principle and Feynman—Kac formulae
for generalized time-fractional evolution equations

Ya. A. Butko

Technische Universitat Braunschweig, Braunschweig, Germany

We consider generalized time-fractional evolution equations of the form

u(t) = uo —|—/0 k(t,s)Lu(s)ds

with a fairly general memory kernel k¥ and an operator L being the generator of a
strongly continuous semigroup. In particular, L may be the generator Ly of a Markov
process & on some state space @, or L := Lo 4+ bV + V for a suitable potential V'
and drift b, or L generating subordinate semigroups or Schrodinger type groups. This
class of evolution equations includes in particular time- and space-fractional heat and
Schrédinger type equations.

We show that the subordination principle holds for such evolution equations and
obtain Feynman—Kac formulae for solutions of these equations with the use of differ-
ent stochastic processes, such as subordinate Markov processes and randomely scaled
Gaussian processes. In particular, we obtain some Feynman—Kac formulae with gen-
eralized grey Brownian motion and other related self-similar processes with stationary
increments.

The talk is based on the joint work with Ch. Bender and M. Bormann.
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Controllability of nonlinear third-order
dispersion equation

D. Chalishajar
Virginia Military Institute, Lexington, USA

Third-order dispersion equation is based on the KdV equation. Russel and Zang
studied the linear part of the KdV equation. Practically, most systems are nonlinear in
nature. We extended the nonlinear KdV equation using very rarely used techniques
of the operator theory. Then I dropped the strong condition of the continuity of
an operator using the method of integral contractor and regularity. I proved the
existence result using the integral contractor of an operator but the uniqueness was
not guaranteed which was taken care of by the regularity of the nonlinear operator.
Then I proved the controllability of the same nonlinear KdV equation. I would like
to extend the same result for the fractional order KdV equation.

On Meyers estimates for Zaremba problem
G. A. Chechkin

Lomonosov Moscow State University, Moscow, Russia

Consider a bounded Lipschitz graph plane domain D = {(z,y) : 0 <z <1, 0 <
y < 1}. We define the Sobolev space of functions W3 (D, F'), where F C 9D is a
Cantor set on the segment {(z,y) : 0 <z <1, y =0}, as a completion of functions
infinitely differentiable in the closure of D and equal to zero in a neighborhood of F,

1/2
with respect to the norm || u [|w; (p,r)= ( [v¥dx+ [|Vo|? dm) . We consider the
D D

Zaremba problem
ou

Au=1 in D, u=0 on F, 520 on G, (1)

where G = 9D \ F, and g—jj is the outward normal derivative of the function u, and [
is a linear functional on the space W3 (D, F).
A variational solution to problem (1) is a function u € W3 (D, F) subject the

equality
/Vu-Vgodxz/f~Vgpda:
D D

for any ¢ € W}(D, F). Here f = (f1, f2), fi € La(D), appears in the representation
of the functional [ due to the Hahn—Banach theorem.
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Theorem. If f € (L2+50(D))n, where 6o > 0, then there are positive constants
d(n, ) < 0o and C such that for solution of problem (1) the following estimate holds:

/\Vu\%édx < C/|f\2+5 dz,
D D

where C' depends only on &y, space dimension n, ¢y from (2), and also constants L
and Ry involved in the definition of the Lipschitz property of the domain D.

The work is supported by RSF (project 20-11-20272).
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Motion of rigid bodies in a viscous fluid
with collisions and slippage

N.V. Chemetov

University of Sao Paulo, Brazil

A. Mazzucato
Penn State University, University Park, USA

In our presentation we will discuss a paradox related to modeling of the motion of
a rigid body in a viscous fluid filling a bounded domain. The motion is described by a
system of coupled differential equations: Newton’s second law and the Navier-Stokes
equations.

The fluid-rigid—body interaction problem has been studied by many authors.
These authors assumed a non-slip boundary condition (classical Dirichlet’s condi-
tion) at the boundaries of the body and of the domain. The assumption led to the
very paradoxical result

e during the motion, there can not be collisions between the body and the domain
boundary.

We will present recent results showing the well-posedness of the fluid-rigid problem
when the slippage (Navier’s boundary condition) is allowed at the boundaries. This
assumption eliminates the non-collision paradox. In the articles [1-3] we showed the
well-posedness of the problem, posed in this statement:

o the local-in-time uniqueness was obtained in [1];

e the global-in-time solvability results were proved in [2,3].
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The main two difficulties of the study of the problem are related to:

a) the lack of Sobolev-type embedding theorems [4,5] in cusp domains: this type
of fluid-filled domains appears at the moments of collision between the body
and the boundary of the domain;

b) due to the definition of a weak solution, the solutions sought must belong to the
BD-bounded deformation space [6].
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On solvability of higher order differential algebraic
equations with singular points

E. V. Chistyakova
Institute for System Dynamics and Control Theory of Siberian Branch of Russian
Academy of Sciences, Irkutsk, Russia

V.F. Chistyakov
Institute for System Dynamics and Control Theory of Siberian Branch of Russian
Academy of Sciences, Irkutsk, Russia

Modeling of various technical and natural processes often results in systems that
comprise ordinary differential equations of different orders and algebraic equations
(see, for example, [1] and the comprehensive bibliography on the subject therein). In
the linear case, such systems can be written in the following form:

k
Az =Y A1)z = f, te T =[a, 8] CR', (1)
=0

where A;(t) are (n x n)-matrices, z = z(t) is a desired vector-function, f = f(¢) is a
given vector-function, (9 (t) = (d/dt)z(t), (9 (t) = z(t). It is assumed that

det Ay(t) =0 Wt € T. (2)
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We suppose that all entries of (1) are sufficiently smooth for further reasoning and
that we are given a set of initial values:

-
X(a):ag;:(ag a; ... ag_l) , (3)
x= (a7 &7 ... @) g eR i=1,2,.. k-1

Systems (1) satisfying (2) are commonly referred to as differential algebraic equa-
tions (DAEs) [2].

Generally, singular points of DAEs are not easy to identify. In particular, the
points where the rank of the matrix Ax(t) changes are not always singular. The goal
of this paper is to formalize the notion of singular points for DAEs, classify them and
propose ways for finding them in the domain of a particular DAE. To this end, we
employ techniques previously developed for £ =1 in [3].
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Oscillation conditions for solutions to first-order
delay differential equations
K. M. Chudinov

Perm National Research Polytechnic University, Perm, Russia

We say that a real-valued function defined on Ry = [0,00) oscillates if it has a
sequence of zeros unbounded from the right.

Unlike solutions to linear ordinary differential equations, solutions to linear differ-
ential equations with aftereffect can oscillate.

Consider the equation

#(t) + at)z(h(t) =0, te Ry, (1)

where a,h € C(R4), a(t) > 0, h(t) < t, . lir+n h(t) = +o00. The following well-known
—+00
theorem generalizes results by Myshkis [1].
t
Theorem 1 (see 2]). If lim [ a(s)ds > 1/e, then all solutions of (1) oscillate.

t—+o00 h(t)

Generalization of Theorem 1 to the equation with several delays

n

i)+ 3 an®r(hi(t) =0, teR., (2)

k=1
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where ag(t) > 0, hi(t) < ¢, tlirll hi(t) = +o00, k = 1,...,n, turned out to be a
— 400

non-trivial problem. In [3], an example of equation (2) is given where the equation
n t
has a non-oscillating solution while lim > [ ay(s)ds > 1/e.
1500 k=1h, (1)

Define n families of sets Ex(t) = {s > ¢ | hi(s) < t},t € Ry, k€ {1,...,n}.

Theorem 2 (see [4]). If lim > [ ax(s)ds > 1/e, then all solutions to (2) os-
1400 k=1 B, (1)
cillate.

Note that the scope of Theorem 2 is wider than that of Theorem 1 even in the
case n = 1.

This work was supported by the State contract of the Russian Ministry of Educa-
tion and Science (contract No. FSNM-2020-0028).
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Concavity properties of solutions to Robin problems

G. Crasta
Sapienza University of Rome, Rome, Italy

[. Fragala

Politecnico di Milano, Milano, ltaly

Let Q c RN be a uniformly convex domain of class C™, with m >4 +
We call Robin ground state of {2 a positive solution to

N
R

—Au=Xu inQ,
Gu +Bu=0 ondQ,
v
where M\ is the first Robin eigenvalue of Q.
We also call Robin torsion function of ) the unique solution to

—Au=1 in Q,
ou

— +Bu=0 onodf.
v
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We prove that the Robin ground state and the Robin torsion function of 2 are
respectively log-concave and %—concave, provided the Robin parameter 8 exceeds a
critical threshold. Such threshold depends on NN, m, and on the geometry of (2,
precisely on the diameter and on the boundary curvatures up to order m.
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Nonsmooth nonoscillating generalized solution
to forward and backward in time Cauchy problem
for Kolmogorov—Fokker—Plank equation
V. G. Danilov

National Research University Higher School of Economics, Moscow, Russia

We consider the Cauchy problem for the Kolmogorov—Fokker—Plank equation

oUu 0%U oUu 5
LU = —e—+¢e?A—— —cB— “Var — 1 =0. 1
U=—eort et —c ax—l—/(e £ 1)U n(dv) = 0 (1)
with a small parameter € — +0.
We will consider a solution in the form

U= e 5@ (p(a,t) + O()), (2)

where S > —C = const. It is clear in this case that the pointwise limit

lim (—elnU) = S(x,t)) (3)

e—+0
exists and, vice versa, the existence of limit (2) implies the representation similar
to (1),

S+o(1
U =exp ( — %)

It is known that the function S(z,t) is a solution to the Hamilton—Jacobi equation
corresponding to (1) and, generally speaking, is not a smooth function. We introduce
the notion of generalized exponential type solution U(z,t) of (1):

1. The limit (3) exists and is a viscosity solution to the Hamilton—Jacobi equation
corresponding to (1)

2. The weak (in a sense) limit is

w — lim (e U5 LU) = 0.
e—0

The last relation implies (see (2)) that ©?(z,t) is a delta-shock type solution to
the continuity equation arising from the transport equation corresponding to (1) in
the framework of the WKB—-Maslov theory.

In the talk, I am going to discuss the property of generalized solutions introduced
above and the possibility to solve the Cauchy problem backward in time for the
solution of this type. For more details, see [1, 2].

33



References

[1] Danilov V. G. Nonsmooth nonoscillating exponential-type asymptotics for linear
parabolic PDE, SIAM J. Math. Anal., 49, 3550-3572 (2017).

[2] Albeverio S., Danilov V.G. Construction of global-in-time solutions to
Kolmogorov—Feller pseudodifferential equations with a small parameter using
characteristics, Math. Nachr., 285, 426-439 (2012).

On a posteriory error estimates for a biharmonic
obstacle problem

K. A. Darovskaya
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

We study a free boundary obstacle problem generated by the biharmonic operator.
Mathematically this problem is formulated as follows: minimize the functional

J(v) = Q/ (%Avf — fv) dx

over the closed convex set
K= {veHz(Q):v|89:O, v>pae inQ}.

Here 2 C R™ is an open, connected, and bounded domain with Lipschitz continuous
boundary 99, a given function f € L?(Q), while ¢ is a given function (obstacle) such
that ¢ € C%(Q) and ¢ < 0 on 9.

Such problem has an application in elasticity theory (frictionless equilibrium con-
tact problems of free-supporting elastic plates or beams over a rigid obstacle).

Using the general theory developed for a wide class of convex variational problems,
we deduce the error identity. One part of this identity characterizes the deviation
of the function (approximation) from the exact solution of our variational problem,
whereas the other is a fully computed value (it depends only on the data of the
problem and known functions). In real life computations, this identity can be used
to control the accuracy of approximate solutions.

Earlier the similar results were established in [1] for the case of rigidly fixed plates
or beams.

The talk is based on results obtained in collaboration with D. E. Apushkinskaya.
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Optimal cyclic exploitation of distributed renewable
resource with diffusion

A.A. Davydov

Lomonosov Moscow State University, Moscow, Russia

We consider a renewable resource distributed in a periodic environment, which we
count as n-dimensional torus, where the dynamics of the resource is described by the
Kolmogorov—Piskunov—Petrovsky—Fisher equation [1,6,7] in the divergent form

pe = ((@)p2)s + alz)p — b(z)p?,

where p = p(z,t) is the density of the resource at a point z of its distribution area
at a time t, and the functions «, a, and b characterize the diffusion of the resource,
the rates of its renewal, and the saturation of the environment with it, respectively.
We assume that these functions continuously depend on a point of this area, but do
not depend on time. In addition, it is assumed that the saturation rate b is positive
and separated from zero by some constant by > 0, the matrix « is positive definite,
and its elements have derivatives satisfying the Holder condition with some positive
exponent.

The resource is exploited by either the permanent harvesting or periodic impulse
harvesting, or, in the case n = 1, by the harvesting control machine moving period-
ically along the circle and collecting at each moment a part of the resource density
that depends on the current machine position and difficulties to search or extract the
resource from this position.

Under reasonable assumptions we prove that for all harvesting modes there exists
an admissible strategy which provide the maximum time averaged income in kind [2—
5].

These studies were supported by Russian Science Foundation by project No. 19-
11-00223.
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A characterization of the space of divergence-free
vector fields from BMO based on the
paradifferential operator calculus

M. N. Demchenko
St. Petersburg Department of V. A. Steklov Institute of Mathematics of Russian
Academy of Sciences, St. Petersburg, Russia

Let T be a singular integral operator of convolution type acting as a bounded
operator in Ly(R?). Under certain additional assumptions on T, its commutator

with a pointwise multiplier b is also bounded in Lo (R?), provided that b € BMO(R?)
(the fact is evident for b € Loo(R?)), and the following estimate holds:

[ ApllLo—r. < CarlbllBrmo- (2)

This well-known fact from harmonic analysis was generalized to a certain class of
paradifferential operators A, (paracommutators) depending on the coefficient b in
a more general way than it is prescribed by (1). In particular, this applies to the
operator of the form

Avf = P(b A Pf) (3)

acting on vector fields f € Lo(R3;C3). Here b is a vector field in R3, A is the
vector product in C3, P is the orthogonal projection on the space of vector fields in
Lo(R3; C3) that are gradients of scalar functions.

The present talk concerns the converse of estimate (2), which allows one to ma-
jorize the BM O-norm of b in terms of A;,. Such estimates are known in the case where
a linear mapping b — A, putting the paracommutator A, in correspondence to a co-
efficient b, satisfies a certain nondegeneracy condition. However, to our knowledge,
the existing results do not cover special case (3). Our goal is the estimate

[0llBaro < CllAp||lL,— L.,

where Ay is given by (3). It can be shown that if b is a gradient of a scalar function,
then A, = 0. This implies that A, depends only on the “divergence-free part” of b.
We establish the last estimate in the case where divb = 0.

The research was supported by the RFBR grant No. 20-01-00627-a.

The Darboux theory of integrability for polynomial
Liénard differential systems

M. V. Demina
HSE University, Moscow, Russia

The Darboux theory of integrability is designed for finding and classifying inte-
grable systems of polynomial ordinary differential equations. A collection of methods
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available in the framework of this theory provides the necessary and sufficient condi-
tions for a system to be integrable with a rational, a Darboux or a Liouvillian first
integral [1]. These methods essentially use properties of invariants (algebraic and
exponential) that the system has. The main difficulty in deriving algebraic invariants
lies in the fact that the degrees of their generating polynomials are not known in ad-
vance. The aim of this talk is to present some novel results and generalizations in the
Darboux theory of integrability. In particular, the problem of finding invariants for
polynomial systems of ordinary differential equations in the plane will be discussed
in details [2]. Along with this, we plan to consider the existence of non-autonomous
Darboux first integrals of a special form.

Several applications of the Darboux theory will be presented. To be more precise,
the following systems of first-order ordinary differential equations

=y, ye=—f@)y—gx), [f(x),9(x)cClz] (1)

known as the Liénard differential systems will be considered. These systems describe
oscillators with a polynomial damping f(z) and a polynomial restoring force g(z).
Our main goal is to provide the solution of the Liouvillian integrability problem [3].
We shall prove that a generic non-linear Liénard differential system is not Liouvillian
integrable. We shall demonstrate that for any numbers deg f and degg such that
deg g > deg f there exist Liouvillian integrable sub-families. In addition, we plan to
present some previously unknown Liouvillian integrable Liénard differential systems.

The research reported in this talk is supported by Russian Science Foundation,
grant 19-71-10003.
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On a class of transmission boundary value problems
with integral boundary conditions
M. Denche

Universite Freres Mentouri, Constantine, Algeria

O. Zibouche

Universite Freres Mentouri, Constantine, Algeria

In this work, we study the boundary value problem for linear second-order ordi-
nary differential equations with discontinuous coefficients, in which we combine the
weighted integral boundary conditions with the transmission conditions. We estab-
lish sufficient conditions guaranteeing that the resolvent has non maximal growth.
Moreover, the operator studied generates an analytic semigroup with singularities in
L,(0,1). The obtained results are then applied to the study of a nonlocal parabolic
partial differential equation with regular boundary conditions.
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Effective Plancherel-Rotach type asymptotics of
2-D Hermitian orthogonal polynomials. The
semiclassical approach
S. Yu. Dobrokhotov

Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia

A. V. Tsvetkova

Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia

The Hermitian-type orthogonal polynomials Hy, n,(z,a) are determined by the
pair of recurrence relations for the polynomials Hy,41n,(2,a), Hnynot1(z,a),
Hp, no-1(2,a), Hpy no—1(2,a), Hyy ny(2,a). We obtain a uniform asymptotics of the
diagonal polynomials H,, ,,(z,a) in the form of the Airy function for n > 1, which is
a far-reaching generalization of the Plancherel-Rotach asymptotic formulas for Her-
mitian polynomials. In this talk, we discuss one of the possible approaches, which we
call “real-valued semiclassics for asymptotics with complex-valued phases” (another
approach based on the construction of decompositions of bases of homogeneous differ-
ence equations is discussed in the talk by A. I. Aptekarev and D. N. Tulyakov, both
of these approaches can be found in [1]). Introducing an artificial small parameter
h = O(1/n) and a continuous function ¢(x, z, a) such that H(z,a)(z,a) = ¢(kh, 2, a),
we obtain a pseudodifferential equation for ¢(z, z,a), where x is a variable and z,a
are parameters. Seeking its solution in the WKB-form, one obtains the Hamilton—
Jacobi equations with complex Hamiltonians connected with a third-order algebraic
curve. This circumstance is the main difficulty of solving the problem and, as a rule,
leads to the transition from the real variable z to the complex one. We propose a
different approach based on a reduction of the original problem to three equations,
two of which have asymptotics with a purely imaginary phase, and the symbol of the
third one is pure real and has the form cosp+ Vo (z) +hVi (x)+O(h?). This ultimately
allows us to represent the desired asymptotics uniformly through the Airy function
of the complex but real-valued argument. We also discuss how this approach is ap-
plied to obtain asymptotics for H,,, »,(%,a) based on the use of third-order ordinary
differential equations.
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Homogenization of nonstationary periodic equations
at the edge of a spectral gap

M. A. Dorodnyi
St. Petersburg State University, St. Petersburg, Russia

In Ls(R), we consider a second-order differential operator A., € > 0, given by
the differential expression A. = —LLg(z/e)L + 72V (z/e). Here g is a measurable
function such that 0 < ap < g(z) < a1 < 00, g(x+1) = g(z), r € R,and V € L1(0,1),
V(z+1)=V(x), x € R. We assume that infspec A =0, A:= A;.

It is well known that homogenization for the operator A, is a threshold effect near
the edge of its spectrum. The spectrum of the operator A, has a band structure and
may have gaps. Does it make sense to associate analogs of homogenization problems
with the edges of internal gaps? We study this issue for a nonstationary Schrodinger
equation and a hyperbolic equation involving the operator A..

Let o > 0 be a (non-degenerate) left edge of a band with odd number s in the
spectrum of the operator A. Let f,g € La(R). Consider the Cauchy problems

{i@tus(x,t) = (Acue)(z,t), {8fvs(x,t) = —(Av.)(z,t) + e 2ov(x, 1),
ue(,0) = (T f)(x), ve(z,0) = (Y f)(2), (Orve)(x,0) = (Teg)(x),

(Tef)(@) = 2m) 72 [ (@F) (k) o7, e*j(a/e, eh)xg, ., , (k) dk.

—s+1

Here {e®**p;(z, k) 72 are the Bloch waves corresponding to the spectral bands of

the operator A with numbers j > s, ﬁj = (—jm,—(F—Dm|U((j — )7, jn], j € N, are
the Brillouin zones, and (®f)(k) is the Fourier image of a function f(x). We prove
the following estimates:

llue(-,t) — 6_“572"%('/5)%(-,t)llm(n«) < CA+ el fll a2y f € H*R),
[0, ) = @0 (/)00 ()l Lo@) < CL+ )£l o2y + gl 22 (my)s
fe HY*R), g€ H'*(R),
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where 1 and vy are the solutions of the effective problems

{i@tuo(x,t) = (A];()muo)(x,t), {afvo(x,t) = —(Agomvo)(x,t),
uo(z,0) = f(x), vo(2,0) = f(x), (Orvo)(z,0) = g(),

Abom — —bs 7 2, by > 0 is the coefficient in the asymptotics of the band function
E(k) = Es(k): E(k) ~ 0+ bsk? k ~0; and @, (x) = ps(x,0) is the periodic solution
of the equation Ay, = 0y, normalized in Ly(0,1).

These results are sharp with respect to the norm type as well as the dependence
on t. The other edges of the spectral gaps have also been studied. The results are
published in [1].

This research was supported by Young Russian Mathematics award and Ministry
of Science and Higher Education of the Russian Federation, agreement No. 075-15-
2019-1619.

References

[1] M. A. Dorodnyi, High-frequency homogenization of nonstationary periodic equa-
tions, ArXiv, 2202.03919 (2022).

Asymptotics for Volterra equations
with advanced variable

P. B. Dubovski
Stevens Institute of Technology, Hoboken, USA

M. Tamarov
Stevens Institute of Technology, Hoboken, USA

Working over parking problem [1], we arrived at the integral equation

f(x+1):n+1/mf(t)dt+p(x+1), x>0, n=0,12,..., (1)
T Jo

where p(t) is a continuous function satisfying a certain convergence property. Dvoret-
zky and Robbins [2] showed the existence of the limit lim f(x) for n = 1 and esti-
Tr—r0o0
mated it.
1. We show that for the homogeneous equation with p = 0 and integer n > 0, there
exists a unique n-degree monic polynomial solution ¢, (z) with positive coefficients.

oo
Assuming that p, = sup [p(t)| and > i™"p; < oo, we prove that there exists a
i<ESit1 =2
constant A such that sup |f(x) — Agn(x)] — 0 as m — oo.
m+1<e<m+2

2. Under similar entry conditions for the more general equation

Jo(K(t) + K(z—t))f(t)dt
fo K(t)dt
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with K (t) > 0, we prove f(z) = O(x). If the integral kernel K () is polynomial, then,
in addition, the limit lim 2% exists.
T—r00 €T
3. Also, we consider the equation

Jo K@) f(t)dt

Jo K(t)dt

fla+1)= +p(x+1) (3)

oo
with Y p; < co. We prove that the solution f(z) is bounded and, under extra

i=2
conditions on the kernel K (¢), has a limit A = lim f(z). In terms of the estimate for
Tr—r0o0
T,= sup |f(t)—A — 0asn — oo, we obtain the rate of convergence.
n<t<n+1
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Korteweg—de Vries equation
on the Uhlenbeck manifold

Ya. Dymarskii

Moscow Institute of Physics Technology, Moscow, Russia
We consider the family
=y +p@)y =Ay;  y(0) —y(2m) =y'(0) —y'(2m) =0 (1)
of periodic eigenvalue problems with 27-periodic real potential

p e P:={C°2nm) /\/0 7rp(:v)d:v =0}

as a functional parameter. We consider the Uhlenbeck manifold of all eigenfunc-
tions [1]

27
Y :={y e C?*2n): / yider =1 A 3(p,\) € P x R: (1) is true}.
0

An analytic and topological description of its foliation by hypersurfaces defined by the
condition that the n-th spectral lacuna has fixed oriented length is given (see [2,3]).
Then we uplift the KdV equation from the space of potentials P to the Uhlenbeck
manifold of eigenfunctions Y (see [4]).
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On some skew products on simplest
multidimensional manifolds

L.S. Efremova
Nizhny Novgorod State University, Nizhny Novgorod, Russia

We study here the returnability properties of trajectories of skew products with
zero-topological entropy defined on n-dimensional (n > 2) cells, cylinders, and tori [1].
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Nonlocal abstract Cauchy problem for nonlinear
fractional integral equation

M. El-Borai
Alexandria University, Alexandria, Egypt

Kh. El-Nadi
Alexandria University, Alexandria, Egypt

This note is devoted to the study of the following nonlocal abstract Cauchy prob-
lem:

() = o+ 3 ) + gy 100 = (o)™ Auls) + f (s Bls)u()lds
0

where uyg is a given element of a Banach space E, c1, ..., ¢, arereal numbers, t1,...,t. €
J =1[0,T], T > 0, Ais a closed linear operator defined on a dense set S; in F,
{B(t) : t € J} is a family of closed linear operators defined on a set S D S1, f is
a nonlinear function defined on J x E and with values in F, 0 < a < 1, 1 is a real
function defined on J, and I" is the gamma function. It is supposed that A generates
an analytic semigroup. The solution of the considered equation is given under suit-
able conditions. Some properties are studied and application on the nonlocal Cauchy
problem is given for fractional integro-partial differential equations.
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A hybrid stochastic fractional order coronavirus
mathematical model via the reservoir—people
transmission network

M. Fahimi

Semnan University, Semnan, Iran

K. Nouri

Semnan University, Semnan, Iran

L. Torkzadeh

Semnan University, Semnan, Iran

Mathematical models of epidemiological systems enable studying and predicting
about potential spread of disease. We develop and analyze a mathematical model
to simulate the coronavirus transmission dynamics based on reservoir—people trans-
mission network. Assuming that (2, {F;}i>0,P) is a complete probability space and
RY = {z € R : 2; > 0, 1 < i < d}, consider the following d-dimensional stochastic
differential equation with the conditions expressed in [1, 3]:

dX(t) = f(t, X(t)dt + g(t, X (t))dB(t), X(to) =Xo, t=to.

We consider an epidemic model based on a 6-dimensional stochastic fractional
differential equation. This model is the simplified and normalized form of the model
presented in [2]. Let S, and E, refer to the number of susceptible and exposed
people, I, denote the number of symptomatic infected people, A, denote the number
of asymptomatic infected people, R, denote the number of removed people including
recovered and dead people, and W denote the COVID in reservoir. Therefore, the
perturbed fractional order system can be described by using the Caputo—Fabrizio
fractional derivative as follows:

CFCDrs, = (ny, —mps, — spbp(ip + kay) — spwby,)dt + 01dBy — 5,02d B>
—Sp(ip + kap)03dB3 — spwa4dB4,

CECDre, = (spbplip + kap) + buwspw — wpep + Spwpep — dpwh e, — mpey,)dt
+8p03(ip + kay)dBs + spwosdBy + wpepo5dBs — wy,ep05dBs
—ep02d By,

CFCDRG, = (wpep — Spwpep — Ypip — ipmy)dt — i,02d By — o5wye,dBs,

CFODra, = (Spwhe, — Vpap — Mpap)dt — apo2dBs,

\3
=
Il

(Ypip + Ypap — Tpmyp)dt — rpoedBa,
CFCDry = e(ip+ ca, — w)dt + o6(i, + ca, — w)dBs.
(1)
Theorem 1. For any given initial value (sy(0),e,(0),i,(0), ap(0),7,(0), w(0)) € RY,
there exists the solution (s,(t),ep(t),ip(t), ap(t), mp(t), w(t)) for model (1) and the
solution will remain in R?_ with probability one.

Theorem 2. The coefficients of differential equation (1) are locally Lipschitz.

Also, the simulation is carried out to demonstrate efficiency of our model, and the
possibility of comparing the stochastic fractional model with the deterministic model,
using data extracted from WHO reports.
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On generation of resolving family of operators
for distributed order differential equations

V. E. Fedorov
Chelyabinsk State University, Chelyabinsk, Russia

Let Z be a Banach space, Df is the Riemann—Liouville derivative for S > 0 and
the Riemann—Liouville integral for 8 < 0, A € CI(Z), i.e. it is a closed linear operator
with domain D4 densein Z, —co <b<0<m—1<ec<méeN we Li(bc), z € Z,

k=0,1,...,m — 1. Consider the initial value problem
/ w(@) D" (0)da = 2z, k=0,1,...,m—1, (1)
m—1—k
/w(oz)Df‘z(t)doz — Ax(t), t>0. @)

b
Let Soy,40 := {pr € C: |arg(u — a)| < 8}, and A € CI(Z) be such that

300 € (7/2,7],a0 = 0 YA € Spy.a0 W(A) € p(A);
Jeg >0 Ve € (0,60),9 S (7T/2,90), a > agp HK(G,a,e) >0Ve Sg,a
WV = A)Hez) < K0, a,e) A" A — a7 1=
We write A € AE_(69, a0) in this case, see [1].
A family of operators {S;(¢) € L(Z) : ¢t > 0} is called I-resolving, I € {0,...,m—1},

for equation (2) if the following conditions are satisfied:

(i) Si(t) is strongly continuous at t > 0;

(i1) Si(t)[Da] C Da, Si(t)Ax = AS;(t)x for all x € D4, t > 0;

(iii) for every z; € Da, Si(t)z is a solution of problem (1), (2) with z; = 0, k €
{0,....,m—1}\ {I}.

Theorem 1. Let —co < b <0< m—-1<c<mEeN, b € (n/2,7], ap = 0,
w € Ly(b,c). Then for every e € (0,e0) there exists an analytic 0-resolving family of
operators of type (6p—m/2, a9, m+e—c) for equation (2) if and only if A € Afjs(Ho, agp).
In this case, there exist analytic k-resolving families of operators {Sk(t) € L(Z) : t >
0}, k=1,2,...,m —1, for equation (2). For every k =0,1,...,m — 1, a k-resolving
family of operators is unique, Sy(t) = JFSo(t), t > 0.
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Application of the cascade search principle for zeros
of functionals to the solution of one-parametric
families of equations with multivalued operators

T.N. Fomenko

Lomonosov Moscow State University, Moscow, Russia

The talk is based on the joint work with Yu. N. Zakharyan.

Let us consider a family of non-negative multivalued functionals {®;},c[;1], where
®,: U =R, t€[0;1], U C X is an open subset in a metric space (X,d). Suppose
that @y has zero in U, i.e., there is a point z¢p € U such that 0 € ®g(xg). What are
sufficient conditions to provide the zero existence preservation for the functionals ®;
in the subset U, at every ¢ € [0;1]7

To answer this question, we use the following minor modification of the concept
of (v, B)-search multivalued functional (0 < 8 < «) suggested by the author [1].

Definition 1. A multivalued functional ®; : U = R, is said to be (o, 8)-search on
U iff for any z € U, r > 0, and ¢ € ®4(x), such that B(z;r) C U and ¢ < (a — B)r,
there exists a point 2/ € U and ¢’ € ®(2') such that d(z,2’) < ¢ and ¢ < gc.

Definition 2. The graph Graph(®;) := {(z,c)|lz € U,c € ®;(z)} of the functional
®, is called {0}-complete iff any fundamental sequence {(zy,c,)} C Graph(®;) with
¢n — 0 converges (in the sense of component-wise convergence) to some element
(&,0) € Graph(®;).

In 20092013, the author suggested several versions of the cascade search principle
for zeros of functionals. In particular, its generalized local version is given in [1].
On the base of these concepts and statements the following result is proved.

Theorem 1. Let (X, d) be a metric space, U C X be an open subset, and 0 : [0;1] — R
be a continuous increasing function. Let ® = {®, : U = Ry }iepo;1] be a parametrized
family of multivalued functionals which are (o, B)-search on U, with {0}-complete
graphs. In addition, let the family ® be 0-continuous, i.e., for anyt',t" € [0;1], z € U,
and for every ¢’ € Oy (x) there exists ¢’ € Oy (x) such that | — ') < |0(t) — 0(t")].
Suppose that 0 ¢ ®,(x) for any x € OU and t € [0;1]. Then, if there is xo € U such
that 0 € ®g(z0), then there is x1 € U such that 0 € ®q1(x1).

This result implies several corollaries on the solvability of one-parametric families
m
of inclusions and equations such as x € Fi(z) N--- N Fpe(x), kﬂl Fii(x) # @, where
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Fi: is a multivalued operator defined on an open subset of a metric space, 1 < k <
m,t € [0;1]. In particular, the known theorem by M. Frigon and A. Granas [2,3] on
the fixed point preservation for a contracting family of multivalued self-mappings is
one of the corollaries.
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Global bifurcation analysis and applications
of multi-parameter dynamical systems

V.A. Gaiko

United Institute of Informatics Problems, National Academy of Sciences of Belarus,
Minsk, Belarus

We carry a global bifurcation analysis of multi-parameter polynomial dynamical
systems. To control all their limit cycle bifurcations, especially, bifurcations of mul-
tiple limit cycles, it is necessary to know the properties and combine the effects of
all their rotation parameters. This can be done by developing the new bifurcation
geometric methods based on Perko’s planar termination principle [1]. This principle
is a consequence of the principle of natural termination stated for higher-dimensional
dynamical systems by A. Wintner who studied one-parameter families of periodic or-
bits of the restricted three-body problem and used Puiseux series to show that in the
analytic case any one-parameter family of periodic orbits can be uniquely continued
through any bifurcation except a period-doubling bifurcation. Such a bifurcation can
happen, e.g., in the three-dimensional Lorenz system. But this cannot happen for
planar systems. That is why the Wintner—Perko termination principle is applied for
studying multiple limit cycle bifurcations of planar polynomial dynamical systems [1].
If we do not know the cyclicity of the termination points, then, applying canonical
systems with field rotation parameters, we use geometric properties of the spirals fill-
ing the interior and exterior domains of limit cycles. Applying this approach, we have
solved, e.g., Hilbert’s Sixteenth Problem on the maximum number and distribution
of limit cycles for the general Liénard polynomial system with an arbitrary number
of singular points [2], the Euler-Lagrange-Liénard polynomial mechanical system [3],
Leslie-Gower systems modeling the population dynamics in real ecological or biomed-
ical patterns [4], and the reduced planar quartic Topp system modeling the dynamics
of diabetes [5]. Finally, applying a similar approach, we have considered various
applications of three-dimensional polynomial dynamical systems and, in particular,
completed the strange attractor bifurcation scenario in Lorenz type systems globally
connecting the homoclinic, period-doubling, Andronov—Shilnikov, and period-halving
bifurcations of its limit cycles [6].
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Nonexistence of solutions for some nonlinear
inequalities with transformed arguments
in a half-space

E.l. Galakhov
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

0. A. Salieva

Moscow State Technological University “Stankin,” Moscow, Russia

We establish nonexistence of different types of solutions for some semilinear elliptic
inequalities with a transformed argument in a half-space. The proofs are based on
the test function method.

On the Rayleigh—Taylor instability

B. Gebhard
University Leipzig, Germany

We consider the inhomgeneous incompressible Euler equations describing two flu-
ids with different constant densities under the influence of gravity. Initially the fluids
are supposed to be at rest and separated by a flat horizontal interface with the heavier
fluid being on top of the lighter one. Due to gravity this configuration is unstable, the
two fluids begin to mix in a more and more turbulent way. This process is called the
Rayleigh—Taylor instability. In the talk we will discuss the existence of solutions to the
Euler equations which reflect a turbulent mixing of the two fluids in a quadratically
growing zone.

This is based on joint works with Jozsef Kolumban and Laszlé Székelyhidi.
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Global existence of solutions of semilinear parabolic
equation with nonlinear memory condition

A. Gladkov

Belarusian State University, Minsk, Belarus

M. Guedda

Université de Picardie, Amiens, France

We investigate the global solvability and blow-up in finite time for the semilinear
heat equation with the nonlinear memory boundary condition

us = Au+ c(t)u? for z € Q, t >0, (1)
t
u(z,?) = k(t)/ ul(xz,7)dr for z € 0Q, t >0, (2)
ov 0
u(z,0) = up(z) for z € Q, (3)

where € is a bounded domain in R™ for n > 1 with smooth boundary 92, v is
the unit outward normal vector on 0, p > 0 and ¢ > 0. Here ¢(t) and k(t) are
nonnegative continuous functions for ¢ > 0. The initial datum ug(z) is a nonnegative
C1(Q) function satisfying the boundary condition at t = 0.

We prove global existence of solutions of (1)—(3).

Theorem 1. There are no nontrivial global solutions of (1)—(3) if

p>1 cmd/ c(t)dt = o0
0
or -
g>1, k(t) = k() >0 cmd/ tk(t) dt = o
0

and at least one of the following conditions is fulfilled:

c
k(t) < e for large values of t (¢ > 0)

or
t179k(t) is nonincreasing for large values of t.

To formulate the global existence result for problem (1)—(3), we suppose that

/ (c(t) + tk(t)) dt < o0 (4)
0
and there exist positive constants «, to, and K such that a > ¢y and
t
Tk(T)
dr < K for t > a. (5)
t—to \/t — T

Theorem 2. Let min(p,q) > 1 and (4), (5) hold. Then problem (1)—~(3) has bounded
global solutions for small initial data.

Similar results we obtain for the case p=1,¢q¢ > 1.
The results of the talk have been published in [1].
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On the relationship of solutions of singular
equations with fractional powers of the operator
coefficient of the equation
A.V. Glushak

Belgorod State National Research University, Belgorod, Russia

For k > 0, the Cauchy problem for the Euler—Poisson—Darboux (EPD) equation

u”(t) + %u’(t) = Au(t), t>0, (1)
uw(0) = ug, u'(0)=0 (2)

in a Banach space F is well-posed only if the operator A € G}, is a generator of the
Bessel operator function (OFB) Yj(¢; A) or, which is the same, k/2 times integrated
cosine operator function. Moreover, if £ > 1, then the initial condition of the form
u/(0) = 0 holds automatically, but it is possible to set a non-zero second condition
with a weight. The question arises: is it possible to weaken the conditions on the
class of operators A so that some other initial value problems would also be solvable?
While B is the generator of the semigroup T'(t; B), t > 0, the operator A = B? is
not necessarily an OFB generator, i.e., problem (1), (2) may not be well-posed. Is
it possible to consider another solvable problem for such an operator? Let’s try to
find a solution to equation (1) going to zero as t — oo and consider the case of the
so-called incomplete initial problem where the second initial condition for ¢ = 0 is not
specified precisely because the solution tends to zero as t — co. Wherein the form of
the first initial condition will depend on the parameter k > 0 from equation (1). The
indicated tendency of the solution to zero is provided by the form of the operator A.
We will assume that A = B2, where B is the generator of the Cy-semigroup 7T'(t; B)
admitting the estimate ||7(¢; B)|| < Ye ! Y > 1, w > 0. Finding a solution to this
problem, one uses fractional powers of the operator B, which is a distinctive feature
of the considered incomplete initial problems, and also the operator function

My (t; B)vg = F(\lijQ) /(32 — )21 (ts; BYvg ds, vy € E

1

o0

called the McDonald operator function by the author.
When finding a solution to the incomplete initial problem for the Legendre equa-
tion
u”(t)(t) + ketht o () + (k/2)%u(t) = Au(t), t>0,

fractional powers of the operator B and the associated Legendre operator function

\/E
T(k/2)

(oo}

shlfkt/(chs—cht)k/Z_lT(s;B)Uo ds, w>lk/2-1|, v €FE
t

Qk(t; B)’Uo =
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are also used.

Note that the fractional powers of the operator coefficient included in the equation
are used not only for constructing solutions to incomplete initial problems, they also
connect the Dirichlet and the weighted Neumann conditions imposed on solutions of
the boundary value problems for the EPD equation in the elliptic case.

Partial regularity in time for the Landau equation
F. Golse

Ecole Polytechnique, Palaiseau, France

The Landau equation is a kinetic equation proposed by L. D. Landau in 1936 to
describe collisions between charged particles interacting via the Coulomb potential.
It takes the form of a nonlinear parabolic equation with a nonlocal dependence of
the coefficients in the solution. Whether classical solutions of the Landau equation
exist for all times or blow up in finite time remains a major open question in the
mathematical theory of kinetic models at the time of this writing. The purpose of
this talk is to present a recent result showing that the Hausdorff dimension of singular
times of weak solutions to the Landau equation satisfying the physically natural a
priori estimates cannot exceed 1/2. (Work in collaboration with M. P. Gualdani,
C. Imbert, and A. Vasseur.)

On the coexistence of hyperbolic basic sets
of dynamical systems

V.Z. Grines
HSE University, Nizhny Novgorod, Russia

According to S. Smale, the hyperbolic non-wandering set NW(f) of a diffeomor-
phism f : M™ — M"™ with dense set of periodic points (M™ is a closed smooth
manifold) is represented as a finite union of invariant closed sets, each of which con-
tains a transitive orbit. Such diffeomorphisms are called A-diffeomorphisms and the
invariant sets are called basic.

If the dimension of some basic set A of an-A-diffeomorphism f is greater than one
and coincides with the dimension of the supporting manifold M™ (n > 1), then A is
unique and coincides with the whole manifold M™. In this case, the diffeomorphism
f is an Anosov diffeomorphism. It follows from works of J. Franks and S. Newhouse,
that if the dimensions of unstable or stable manifolds of points from A are equal to
one, then the ambient manifold M™ is n-torus.

If the dimension of a basic set A of a diffeomorphism f is n — 1, then, according
to R. Plykin, A is either an attractor or a repeller. The author of the report and
E. Zhuzhoma have proved that if the non-wandering set of a structurally stable dif-
feomorphism f contains an orientable attractor (repeller) whose dimension is n — 1
and coincides with the dimension of the unstable (stable) manifolds of its points (such
attractor (repeller) is called expanding (contracting)), then the ambient manifold M™
is n-torus [1]. Recently, the topological structure of manifolds M™ (n > 3) admitting
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diffeomorphisms whose non-wandering set consists of orientable expanding attractor
and contracting repellers of dimension n — 1, was completely described by the author
in collaboration with E. Zhuzhoma and V. Medvedev.

If n = 2, then there is a diffeomorphism f on a surface M? of any genus whose non-
wandering set contains one-dimensional basic sets. In recent papers by the author,
E. Kurenkov and D. Mints [2-4], the topological structure of their embedding in
ambient surface was investigated and dynamics of f in connection with the properties
of basic sets and genus of ambient surface was studied.

For n = 3, we consider a class of diffeomorphisms assuming that all basic sets of a
diffeomorphism are two-dimensional. As it was mentioned, such basic sets are either
attractors or repellers and there are only two types of such basic sets: a basic set of
the first type is homeomorphic to two-dimensional torus which is tamely embedded in
the ambient manifold and such basic set is called a surface; a basic set of the second
type is locally arranged as direct product of Cantor set and open two-dimensional
disk (it is an expanding attractor or a contracting repeller in this case). It is shown
by the author, M. Barinova and O. Pochinka in [5], that the non-wandering set of any
diffeomorphism from the considered class consists of either basic sets of the first type
or basic sets of the second type.

In the report, we will discuss the above results from the point of view of their appli-
cation to the topological classification of cascades with the hyperbolic non-wandering
set on manifolds. For an overview of the topic, see books and survey [6-8].

The report is supported by the Laboratory of Dynamical Systems and Applications
NRU HSE, by the Ministry of Science and Higher Education of the Russian Federation
(ag. 075-15-2019-1931).
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Existence and multiplicity of solutions for a nonlocal
problem with critical Sobolev—Hardy nonlinearities

A.Hammami
Higher School of Sciences and Technologies, Sousse, Tunisia

A. Daouas
Higher School of Sciences and Technologies, Sousse, Tunisia

K. Saoudi

College of Sciences at Dammam, Dammam, Kingdom of Saudi Arabia

We investigate the following nonlocal equation involving critical Sobolev—Hardy
exponents:

(=A)*u — pe = Al 2u+ M in

o[>
(P)
u=20 in R™\ Q.

Here Q C RY is a bounded domain with Lipschitz boundary, 0 < s < 1, A > 0 is

2 N42s
()

a parameter, 0 < p < pg with gy = 4°——+ being the sharp constant of the
r2 N—25>

fractional Sobolev-Hardy in RV, 0 < a < 25 < N, 1 < ¢ < 2%, where 2} = 28

and 2} = QEVNf_zi:) are the fractional critical Sobolev and Sobolev—Hardy exponents
respectively. The fractional Laplacian (—A)® with s € (0, 1) is the nonlinear nonlocal

operator defined on smooth functions by

(~ayu@ =3 [ | ue+y) +;|(]f+;y) “2u8 gy (@ erY).

We combine several variational methods in order to show the existence of multiple
positive solutions to our problem. Precisely, we prove the following result:

Theorem 1. For every i € [0, o), there exists A € (0,00) such that
(i) ¥ A € (0,A), problem (P) has two distinct solutions.
(it) For A= A, problem (P) has at least one solution.

(#1) ¥ X € (A, 00), problem (P) has no solution.

Among the tools we used we cite mountain pass theorems, sub and super solutions,
min-max methods and other basic notions of the critical point theory.
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Smoothness of generalized solutions of the second
boundary-value problem for differential-difference
equations on an interval of non-integer length

N.O. Ivanov
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

We consider the second boundary-value problem for the second order differen-
tial-difference equation with variable coefficients on the finite interval (0,d), d = N+8,
0 < 0 < 1. We assume that the Hermitian part of the difference operator is a posi-
tive definite operator. We have proved that the corresponding differential-difference
operator is a Fredholm operator. It is shown that a generalized solution is smooth
within subintervals obtained by deleting the orbits for the ends of the interval (0, d),
generated by the group of integer shifts. However, smoothness of generalized solu-
tions can be violated at the points of the mentioned orbits. We prove that, if the
right-hand side of the equation is orthogonal in L2(0, d) to a finite number of linearly
independent functions, then a generalized solution from the Sobolev space W3 (0, d)
belongs to the space W (0, d).

Similar results were obtained for the first boundary-value problem in [1].

This work is supported by the Ministry of Science and Higher Education of the
Russian Federation: agreement No. 075-03-2020-223/3 (FSSF-2020-0018).
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Elliptic differential-difference equations with finite
and infinite boundaries traces

E. P. lvanova
Moscow Aviation Institute (National Research University), Moscow, Russia

We consider the boundary value problem

n

Apu= =" (Rijug,), = f(z) (z€Q), (1)
i,j=1
u(@) =0 (z ¢ Q). (2)

Here @ is a bounded domain in R™ with smooth boundary 0Q, f € La(Q), the
difference operators R, : Lo(R"™) — L2(R™) are given by

Ryu()= Y agn(u(@+h)+u(z—h) (ayn€R),
heM,,

where Mij C M is a finite set of vectors with incommensurable coordinates. The

solution u of boundary value problem (1), (2) belongs to the Sobolev space H(Q)
(by a solution, we mean the generalized solution understood in the standard way).
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For elliptic differential-difference equations with integer or commensurable shifts
of the independent variables, the theory of boundary-value problems is created in the
works of Skubachevskii (see [1]).

Unlike the problems studied in [1], equation (1) contains incommensurable shifts
of the arguments, which greatly complicates the study. However, in the case where the
orbit of the boundary 0@ under the shifts presented the difference operator, is finite,
the methods developed for problems with integer shifts are applicable. In particular,
problem (1)-(2) can be reduced to the boundary problem for a differential equation
with nonlocal boundary conditions.

For the case where the orbit of the boundary under the shifts presented in the
difference operator, is infinite, the nature of the problem changes fundamentally. In
particular, its solutions can have an almost everywhere dense set of derivative discon-
tinuites. A method for obtaining the conditions of strong ellipticity (the fulfillment
of the Garding-type inequality) based on the construction of a system of interrelated
matrix polynomials is proposed [1]. These conditions are stable relative to small per-
turbations of the shifts of the difference operator and allow us to approximate the
problems under consideration by problems with rational (commensurable) shifts.

This work was supported by the Russian Foundation for Basic Research (grant
No. 20-01-00288).
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On elliptic complexes in relative elliptic theory

N.R. lzvarina
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

A.Yu. Savin
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

We study the theory of complexes in relative elliptic theory. This theory was
introduced by Sternin [1,2] as a theory of boundary-value problems with conditions
on submanifolds of arbitrary dimension.

Here we consider pairs (M, X), where M is a closed smooth manifold with its
submanifold X of codimension v, i : X < M denotes the corresponding embedding.

We deal with complexes of bounded operators acting in Sobolev spaces

H*(M,Ey) — H*(M,Ey) = H*(ME) . H™(M,Ey)
0— ® = @ Rl @ e Ty ® -0,
Hto (X, Fp) H"(X,F,) H" (X, F) Hi»(X,F,)

(1)

where
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e [, F; are complex vector bundles on M and X respectively, H® are Sobolev
spaces of vector bundle sections;

e the operators d; are morphisms in the sense of [3],
g - (4 G
To\B; Dj)’
where A; and D; are pseudodifferential operators (¢’DOs below) on M and X
respectively. Boundary and coboundary operators B; and C; are equal to B; =

1 -k 1" _ !/ . !/ !/ 1" / 1
D% ;i Dy, Cj = Diy ;i D' ; for some DOs D)y . Dy 5 and D ;, D ; on
M and X respectively. Boundary operator ¢* is defined as

i*  HY(M,E) — H*"/*(X,E|x), i :u—ulx, s>v/2.
A dual coboundary operator i, is defined as

iv: H /23X, E|x) — H*(M,E),s > v/2.

For such complexes we introduce the notion of ellipticity. The following result is
obtained.

Theorem 1. If the complex (1) is elliptic, then it has Fredholm property.

This work is supported by the Ministry of Science and Higher Education of the
Russian Federation, agreement No. 075-03-2020-223/3 (FSSF-2020-0018).
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Fixed point results of Reich contraction in fuzzy
metric spaces endowed with graph
Sh. Jabeen

University of Science and Technology Bannu, Bannu, Pakistan

M. Younis
Jammu Kashmir Institute of Mathematical Sciences (Institute of Higher Excellence),
Srinagar, India

In this paper, we define a new class of Reich type contractions in the framework
of complete fuzzy metric spaces satisfying the graph preserving conditions. A large
number of different types of contractive mappings formulated using directed graphs
in literature satisfy the presented contractive condition. Our main result is a natural
generalization from fuzzy metric spaces to fuzzy metric spaces with a graph and
enriches our knowledge of fixed points in such spaces. The results are further validated
with the examples and application.
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Nonlinear elliptic equations of nonstrictly divergent
form and subcoercive operators

E. Kalita
Institute of Applied Mathematics and Mechanics, Donetsk

We consider nonlinear elliptic equations and systems of the form
div' A(z, D*u) = f(x)
in R™ s+t is even. We assume that A satisfies the structure condition

|B(x,€) = Blz,n)| <[§—l,

B is defined by AGH)/2q 4 div' B(x, D%u) = s div' A(x, Du), 3 > 0 is a normalizing
factor (say, ‘a perturbation of the poly-Laplacian should be Lipschitz-continuous with
constant 1’), and A(z,0) = 0. Under the stronger condition |B(x,&)—B(z,n)| < K|¢—
n|, K < 1, the operator is coercive in pair with AG—=%/2y, in H*. In the case s = t, the
condition with K < 1 coincides with the standard structure condition for divergent
equations and systems, and in the case of a single nondivergent (¢ = 0) equation with
Cordes condition. Whereas the condition with K = 1 allows degeneration of ellipticity,
e.g., the operator A™u — |[D?™u| as well as the linear operator AC+t)/2y — g3ty
satisfies it. And for K = 1 our operator is still monotone in H® in pair with A(—1/24,

The nonstrictly divergent case s # t (in contrast to the strictly divergent case
s = t) allows one to establish some estimates of solutions even under degenerate
structure condition, namely,

”DSiluHa72 < calli=1fllase

for some range of a depending on s,t,n. Here || - ||, is the norm in Ly(R™) with the
power weight (1 + |z|)*, and I; is a Riesz potential of order t.

We will discuss existence and uniqueness results in various settings under more
or less strong restrictions: for solutions in the sense of integral identity, in the sense
of maximal monotone extension, in the sense of generalized pseudomonotonicity of
Browder—Hess type.
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Perturbation of simple wave

L. A. Kalyakin
Institute of mathematics with computing center UFRC RAS, Ufa, Russia

We consider the equation

¢ 20%

c 09
ot? 02

+ Q% sin ¢ cos ¢ + w? sinqS—l—ozE:O, (1)
which determines the dynamics of the domain bounds in a weak ferromagnet [1].

The simple (or traveling) wave solutions ¢ = ®g(3x — vt), »,v = const, are
determined by the ordinary differential equation

d*® dd
[u2—02%2]@+9251n¢cos¢+w2 Sin@—auE = 0. (2)

The simple wave under the boundary condition
O(s) >0 as s = —oc0, P(s) > 7 as s — +oo. (3)

corresponds to the domain bound. Such solution ®y(sx — v t) exists if the coefficients
of the equation are constant.

We study the equation with slowly varying coefficients 2, 2, w?, o, which depend
on the slow time 7 = ¢t, [2]. Here 0 < ¢ < 1 is a small parameter. For problem (1), (3)
with the initial data corresponding to an unperturbed simple wave, we construct the
asymptotic solution

d(z,t;e) = B(s; &, 7)1+ O€)], ase—0, forte[0,0™ ).

The leading term depends on the fast variable s = e 715(¢, 7) and on the slow variables
&€ = ex, 7 = et. The function ®(s;&,7) is a solution to equations (2), (3) under
»n = 8¢, v = S;. The phase function S(§,7) is formed by two solutions of the
Hamilton-Jacobi equations

((SF)? = A(SHPAL FaSide —6F =0, 6 = +w’ - Q2. (4)

Here the constants Ay > 0 are taken from the unperturbed solution in asymptotics
at infinity,

®o(s) = exp(A+s)[cx + O(exp(A+s))], s — £o00, ¢+ = const # 0.
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On the existence of almost periodic solutions
for systems governed by differential equation
and sweeping process

M. . Kamenskii

Voronezh State University, Voronezh, Russia

V.V. Obukhoskii

Voronezh State Pedagogical University, Voronezh, Russia

G. G. Petrosyan

Voronezh State University of Engineering Technologies, Voronezh, Russia

Let H be a real separable Hilbert space. We consider the existence of almost
periodic solutions for systems governed by a differential equation and a sweeping
process of the following form

'(t) = Aw(t) + f(t, z(t), u(?)),

—u'(t) € Neg (u(t) + g(t, 2(t), u(t)),

where A : D(A) C H — H is a linear monotone operator generating a bounded
Cy-semigroup in H, f : Rx Hx H — H and g : R x H x H — H are continuous
monotone operators, and N¢ is a normal cone defined for a closed convex set C' C H.

This work was supported by the State contract of the Russian Ministry of Edu-
cation as part of the state task (contract FZGF-2020-0009) and the RFBR (project
numbers 19-31-60011, 20-51-15003).
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On certain new classes of integral operators in
complex analysis

A. Karapetyants
Southern Federal University, Rostov-na-Donu, Russia

We will discuss two classes of operators in complex analysis, which, despite similar
definitions, possess quite different properties.

In recent papers, some classes of operators in complex analysis have been studied,
containing, among others, classical operators of mathematical physics. For example,
in [1] we introduce and study the class of Hausdorff-Berezin operators on the unit disc
based on the Haar measure. This class includes the Berezin transform itself, as well
as some other classical operators, such as the invariant Green potential. We discuss
certain algebraic properties of these operators, obtain conditions for their bounded-
ness, and discuss questions of approximation of functions by some constructions in
the form of Hausdorff-Berezin operators (see also [2]).

A related new class of operators called the Hausdoff-Zhu operators by the au-
thors, also appears naturally in problems of spectral representations (we refer to [3]).
Conditions of boundedness, compactness, and nuclearity of this operators are given.
A special attention is paid to particular but important cases of analytic symbols and
radial symbols. It is shown in particular that Hausdorff-Zhu operators with analytic
symbols are at most two-dimensional and their spectra are computed.
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Nonlocal dynamics of a model of coupled oscillators
with large parameter and delay
A. A. Kashchenko

P. G. Demidov Yaroslavl State University, Yaroslavl, Russia

We study nonlocal dynamics of the following model of N (N > 2) identical oscil-
lators with nonlinear feedback:

ity = AF(uj(t =T)) +y(uj—1 = 2uj +ujpn), j=1..., N, 1)
Ug = UN, UN41 = U1.

Here u; are real functions, F is a piecewise continuous function such that F'(z) =0
for |z| = p (where p > 0 is a constant), the delay T is a positive constant, the nonzero
coupling parameter y satisfies the inequality v > —% (this condition is necessary for
system (1) to be dissipative).
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The key assumption of the study is that the positive parameter X in system (1) is
large enough (A > 1).

We are interested in nonlocal dynamics of model (1). With the help of a special
method of large parameter, we construct asymptotics of the relaxation modes of this
model.

We select a special set S of initial conditions in the phase space C([—T,0]; RY)
and construct the asymptotics of all solutions of system (1) with initial conditions
from this set. By asymptotics, we get a finite-dimensional Poincare mapping refining
the parameter values involved in the formulas for the solution asymptotics.

It was proved for positive values of the parameter v that all the oscillators are
synchronized starting from some point in time. For —i < 74 < 0, in the case of an
even number of oscillators, it was shown that all oscillators with even indices and all
oscillators with odd indices are synchronized separately. It was shown for the case of
an odd number of oscillators that all NV parameters indicating the Poincare mapping
are close to the same two-dimensional subspace of the original N-dimensional space
with all iterations of the mapping.

This work was supported by the Russian Science Foundation (project No. 21-71-
30011).
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Bifurcations in second-order differential equations
with delay

[.S. Kashchenko

P. G. Demidov Yaroslavl State University, Yaroslavl, Russia
Consider the singular perturbed second-order differential equation with delay
e2i +o(e)i + k(e)r = f(z(t — (), 2(t — 7(2)),e), 0<e< 1. (1)

Here x € R, f and 7 > 0 are nonlinear sufficiently smooth functions. Let f(0,0,¢) = 0,
so x = 0 is an equilibrium. Consider some small (¢ independent) neighbourhood of
zero. Let 7(x) be bounded by M for all  from this neighbourhood: 0 < 7(z) < M.
We study dynamics of (1) in the small neighbourhood of the zero equilibrium state
in the phase space 0[17 M,0] for sufficiently small €.
Note that equation (1) may be obtained from the equation with large delay

¥+ at +br =gzt —Tr(x),z(t—Tr(x))) (T >1).

In this case, e = T~2, o(c) = \/za, k(¢) = b, and f(x,y,¢) = g(z,/2Y).

In the case of a large constant delay 7(z) = T, this problem was discussed in [1],
and in the case f(z,y,¢) = f(x,¢) in [2]. In the case of a large state-dependent delay,
results can be found in [3].

In the situation where all points of the spectrum of the linear part of (1) have
negative real parts (separated from zero) for small enough ¢, the dynamics is trivial:
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all solutions tend to zero. If for small enough ¢ at least one point of the spectrum has
positive real part, then the dynamics become nonlocal: there are no stable solutions
in the neighbourhood of zero. In all other situations there exist points of the spectrum
located arbitrarily close to the imaginary axis. The situations where the number of
such points is infinitely large are of greatest interest. We say that such critical cases
have infinite dimension.

In the critical cases, special nonlinear equations are constructed, namely, normal
and quasinormal forms, that either do not depend on a small parameter, or depend
on it regularly. Their solutions determine the main parts of the asymptotic expansion
of solutions of (1).
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Computation and tracing of stationary solutions
of Marchuk—Petrov model

M. Khristichenko
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow, Russia

Yu. Nechepurenko
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow, Russia

D. Grebennikov

Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow, Russia

G. Bocharov
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow, Russia

Mathematical models with time delays are widely used to analyze the mechanisms
of the virus infections dynamics [1,2]. These models are usually calibrated according
to acute forms of the virus infections dynamics. At the same time, they can also be
used to study chronic forms that are more difficult to treat. However, this potential
of the models has not been practically realized yet, in particular, due to the fact that
finding all possible stationary solutions of a given model that correspond to chronic
forms turned out to be a nontrivial problem, and until recently there were no known
algorithms for solving it.
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This talk is devoted to the technology proposed in [3,4] for computing all station-
ary solutions of a given virus infection model with fixed values of the model parameters
and analysing their stability. As a development of this technology we propose to com-
pute stationary solutions of the model using methods of computer algebra. Moreover,
we propose a new method for tracing all stationary solutions along a given parameter
of the considered virus infection model. This method is a modification of the method
proposed in [3]. To demonstrate the new technology, we use the Marchuk—Petrov
model of antiviral immune response [5] calibrated according to the dynamics of the
hepatitis B virus infection. This model and its subsequent modifications developed
to describe immunophysiological reactions of the body as well as mixed viral and
bacterial infections are classic mathematical models used to analyze the mechanisms
of viral diseases.

This work was supported by the Russian Science Foundation (Grant 22-11-00025).
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The two and one-half dimensional Vlasov—Poisson
system: well-posedness and stability of confined
steady states

P. Knopf

Universitat Regensburg, Regensburg, Germany

J. Weber

Centre of Mathematical Sciences, Lund University, Lund, Sweden

We consider a two-component collisionless plasma described by the Vlasov—Poisson
system with an external magnetic field. The setting is two and one-half dimensional
meaning that the distribution functions of the ions and electrons are independent of
the third space dimension. We first discuss the existence and uniqueness of global
classical solutions to the corresponding initial value problem. Based on the ideas
of [1] and [2], we construct confined steady states meaning that the support of their
distribution functions stays away from the wall of the confinement device. Lastly, as
the main part of [3], we discuss the stability of such steady states with respect to
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perturbations of the initial data via the energy-Casimir method, and with respect to
perturbations of the external magnetic field.

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 678698).
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On uniqueness of the classical solution to the
Dirichlet problem for a parabolic system
on the plane

A.N. Konenkov

Ryazan State University, Ryazan, Russia
In the strip D =R x (0,7, 0 < T < oo, the parabolic operator
2
Lu = Oy — Z AW (2)0k,
k=0

is considered, where u = (u1,...,un)" and A®)(z) = (al(?) ()%=, The operator L
is assumed to satisfy the following conditions:

a) the uniform parabolicity, i.e., the eigenvalues A (z) of the matrix A®)(z) satisfy
the inequality

ReXp(z) 2 p >0 VzeR; (1)
b) the coeflicients are bounded and satisfy the Holder condition,
aPec*®), 0<a<1 (2)
ij ) :

In [1-3], the first boundary value problem for a parabolic system on the plane
was considered. In particular, uniqueness of the solution in the space C'*'/ 2(Q) was
established in domains with non-smooth lateral boundaries of the form z = g(t) with
a function g satisfying the condition

g€ CU2([o, 17). 3)
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In a bounded domain € of the form Q = {(z,t) € D|g1(t) < x < ga2(t)} with
g1(t) < g2(t), 0 <t < T, we consider the first boundary value problem

Lu = 0 in €,
u(gi(t),t) = (t), 0<t<T, (@)
u(g2(t)7t) = ¢2(t)7 0<t<T,
u(z,0) = o, 91(t) <z < ga(t).

We prove uniqueness of the solution in the class of functions continuous up to the
boundary.

Theorem. Let conditions (1), (2) be satisfied for the operator L and condition (3)

hold for functions g1 and ga, and let p; € C((0,T]), ¢ € C([¢1(0),12(0)]), ©i(gi(0)) -
¥;(0), i = 1,2. Then there exists at most one classical solution u € C%(2) N C()
of the first boundary value problem (4).
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On blow-up conditions for solutions of inequalities
with the co-Laplacian

A. A. Kon'kov

Moscow Lomonosov State University, Moscow, Russia

Let 2 be an open subset of R™, n > 2, such that S, N Q) # & for all » > rg, where
S, is a sphere in R" of radius r centered at zero and rg > 0 is a real number. We
study non-negative solutions of the problem

Asu > f(z,u) in Q, Ul =0, (1)

where A u = %V|Vu|2Vu is the infinity Laplace operator. It is assumed that
flz,ta) > f(x,t1) for all to > t; > 0 and = €  and, moreover,

m12}["(;]‘(30,15) >0

for any compact set K C 2 and real number ¢ > 0. Also let there be a real number
o > 1 and non-negative measurable functions g and ¢ such that

Ielgfg fx,rt) = q(r)g(t)
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for all ¢ > 0 and r > 7o, where Q,, = {& € Q : r/o < |z| < ro}. In so doing, we
assume that g(t2) > g(t1) > 0 for all t5 > ¢; > 0.

Solutions of (1) are understood in the viscosity sense [1]. In the case of 002 = &,
i.e. 2 =R", the boundary condition in (1) is valid automatically.

Theorem 1. Let
/ (g(t)t)~"*dt < oo and / r=23¢ 3 (r) dr = o.
1 -

Then any non-negative solution of (1) is identically equal to zero.

For the problem
Asou > p(|z))u?  in Q, ulyo =0, (2)

where p € C([0,00)) is a positive non-increasing function, Theorem 1 implies the
following result.

Theorem 2. Let A > 3 and

/00 rO=2Bp30) dr = 0.

0

Then any non-negative solution of (2) is identically equal to zero.

This research is supported by the Russian Scientifical Foundation (grant 20-11-
20272) and RUDN University (program 5-100).
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On an integral equation for fractionally loaded
boundary value problem of heat conduction

M. T. Kosmakova

Karaganda Buketov University, Karaganda, Kazakhstan

M. 1. Ramazanov
Karaganda Buketov University, Karaganda, Kazakhstan

In the first quadrant @ = {(z,t) |x > 0, ¢t > 0}, we consider the boundary value
problem

= f(l‘,t), (1)

z=a(t)

Up — Ugg + A {CDgytu(x, t)}

uli—g =v(T); Uzl =9(t) , (2)
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where A is a complex parameter, Doﬂ,t u(zx, t) is the Caputo derivative of order f3,
2 < B < 3, aft) is a continuous increasing function, «(0) = 0, or «(t) is a positive
const.

The problem is studied in the class of continuous functions.

Inverting the differential part of problem (1)—(2) and introducing the notation

p(t) = {DF ue. 1)}

z=a(t) ’

one transforms BVP (1)-(2) to the equivalent integral equation

t
n O =) [ Ko r) ) dar = £ (0)
with the kernel
1 2(t t -1)(B-2
PSRN U P (S 01 B S
Vr2PTE (t— 1) 8t —7 2(t=7)) T(3-p)(t-7)
where D, (z) is the parabolic cylinder function.
The kernel satisfies the estimate

F(f-3)  (B-1(B-2
mVE—T BB (-7

K (t,7)] <

i.e., the kernel has a non-integrable singularity, and the integral equation cannot be
solved by the method of successive approximations when 2 < § < 3.

This work was supported by the Science Committee of the Ministry of Education
and Science of the Republic of Kazakhstan (Grant No. AP09259780, 2021-2023).
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Variational problems with measurable bilateral
constraints in variable domains

A.A. Kovalevsky
Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences, Russia;
Ural Federal University, Russia

Let © be a bounded domain in R"™ (n > 2), {Qs} a sequence of domains in R™
contained in Q, and p > 1. We assume that the embedding of W1P(Q) into LP(Q)
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is compact, the sequence of spaces W1P(€,) is strongly connected with the space
WLP(Q), and the sequence of domains Q, exhausts the domain €.

Let c1,co > 0, and, for every s € N, let us € L1(Qy) and pg > 0 in 5. We assume
that the sequence of norms ||| 11 (q,) is bounded and that [, psdz — 0 for every
sequence of measurable sets Hy C )5 with meas Hs — 0.

For every s € N, let fs : Qs x R® — R be a function satisfying the following
conditions: for every £ € R™, the function f4(-,€) is measurable on Qg; for almost all
x € Qg, the function fs(z,-) is convex on R"™; for almost all x € Q4 and for all £ € R™,
one has

€ — s (@) < (2, €) < cal€]” + ps ().

For every s € N, define a functional F, : WP(Q,) — R by
Fs(v) :/ fs(z, Vo)dz, ve WhP(Qy).
Qs

We assume that the sequence {Fs} T'-converges to a functional F : W1P(Q) — R.

Let c3,c4 > 0, and, for every s € N, let G5 : WHP(Q,) — R be a weakly lower
semicontinuous functional. We assume that (a) G(v) > 03||v\|7zp(95) — ¢4 for every

s € N and every v € WHP(Qy); (b) there exists a functional G : WP(Q) — R
such that G4(vs) — G(v) for every function v € WHP(Q) and for every sequence
vs € WHP(Q,) with the property [[vs — v||Lr(o,) — 0.

For every measurable functions ¢,1: Q — R, we define
Vg, ) ={v e WHP(Q): o < v < ¢ aee. in Q}.
Similarly, for every measurable functions ¢,1:  — R and every s € N, we define
Vi(p, ) = {v e WhP(Q,) : p <v <9 ace. in Q).
One of our main results is as follows.

Theorem 1. Let p,1: Q — R be measurable functions, and assume that there exist
functions @, € WIP(Q) such that o < @ < <1 a.e. in Q. For every s € N, let u,
be a function in Vs(p, ) minimizing the functional Fs+Gs on the set Vi(p,v), and let
{5k} be an increasing sequence in N. Then there exist an increasing sequence {s;} C
{3k} and a function u € V(p,v) such that the function u minimizes the functional
F 4G on the set V(p,v), |Jus, —UHLP(QSJ_) — 0, and (Fs; + Gy, )(us;) = (F+G)(u).

For the above notions and the proof of Theorem 1, see [1].
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Comparison of numerical methods for solving the
homogeneous Dirichlet problem for the Helmholtz
equation in an arbitrary domain

V. A. Kozhevnikov
Peter the Great St. Petersburg Polytechnic university, St. Petersburg, Russia

E. G. Apushkinskiy
Peter the Great St. Petersburg Polytechnic university, St. Petersburg, Russia

A. M. Biryukov
Peter the Great St. Petersburg Polytechnic university, St. Petersburg, Russia

We study the shape-optimization problem for the cross-section of an active ele-
ment in gas discharge laser physics. Our goal here is to get a better amplification
factor [1] and justify the technological requirements for the alignment accuracy of the
gas-discharge tube profile. This shape-optimization problem is reduced to a bound-
ary value problem for the homogeneous Helmholtz equation with the zero Dirichlet
boundary condition.

For the numerical study of such problems, either the finite difference method
(FDM) or the finite element method (FEM) over the whole domain is used. However,
by these methods, it is not always possible to satisfy the zero boundary conditions
with required accuracy in the case of arbitrary cross-sections. Therefore, the method
described in [2], which initially requires calculations only on the boundary of the do-
main, turns out to be attractive. In the proposed method the solution is represented
in the polar coordinate system as a finite sum where each summand is the product of
the Bessel function of an appropriate order depending on the radius by the trigono-
metric function of the polar angle, and by the weight factor. Each term of this sum
satisfies the homogeneous Helmholtz equation, while the corresponding weight factors
are selected to ensure the fulfillment of the boundary condition with a given accuracy.

In this talk, we compare the numerical results obtaining by all three methods for
cross-sections allowing an exact solution (rectangle, circle, ellipse). Using the same
number of nodes in all three methods we see that the “boundary-only” method is
the fastest one for finding the solution of the Helmholtz equation and is intermediate
between FDM and FEM with respect to the time of finding an amplification factor.
Moreover, the “boundary-only” method requires less memory and fewer nodes to
obtain the prescribed accuracy.
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Bifurcation analysis of periodic solutions
to a nonlinear functional differential equation
with a small parameter at the derivative

E. P. Kubyshkin

P. G. Demidov Yaroslavl’ State University, Yaroslavl’, Russia
We consider the functional differential equation
evit) + 2(t) + fla(t — 1)) = 0, (1)

where 0 < 1 << 1 and f(z) is a sufficiently smooth nonlinear function. Bifurcations
of periodic solutions from equilibria z, : z. + f(z.) = 0 are studied (including
multiples) when the parameters of the equation are varied. Stability of the equilibria
x4 is determined by the the roots of the characteristic equation

A+ 14 f (z)e =0, AeC. (2)

When |f'(2.)] < 1(|f ()| > 1), the equilibria are asymptotically stable (unstable).
If |f (2.)] = 1 and £, = 0, then equation (2) has a countable number of roots located
on the imaginary axis of the complex plane. Moreover, a countable number of resonant
relations between these roots occur. Thus, for |f (z.)| = 1 + 2 with |eq| << 1,
the infinite-dimensional critical case in the stability problem for the equilibria z, is
realized. We prove in this case that the behavior of solutions of equation (1) in the
vicinity of the equilibrium is described by a countable system of nonlinear ordinary
differential equations depending uniformly on the parameters €1,e2. This system is
called the normal form of equation (1) in the vicinity of the corresponding equilibrium.
We propose an efficient algorithm for constructing the coefficients of the normal form.
The structure of the normal form allows us to introduce a single “fast” variable and
a countable number of “slow” variables. We then apply the averaging method to
the corresponding system. The equilibria of the averaged system of “slow” variables
determine the periodic solutions of equation (1), preserving the character of stability.
Analysis of the equilibria of the averaged system of “slow” equations allows us to
study the bifurcations of periodic solutions depending on the parameters €1,e2, to
construct asymptotic formulas for them, and to study also the evolution of periodic
solutions when the parameters of equation (1) are varied. We use numerical and
analytical methods for this purpose. This approach was applied to study the dynamics
of the Tkeda equation [1], the Mackie-Glass equation [2], and also the equation for the
dynamics of meat flies population by Nicholson [3]. The possibility of bifurcation
of a large number of stable periodic solutions from equilibria, i.e. bifurcation of
multistability, is shown. When the bifurcation parameters are varied, the periodic
solutions may pass through a series of the period doubling bifurcations and tranform
into the chaotic attractors, thus forming the chaotic multistability.
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Kolmogorov’s theory of turbulence and its rigorous
one-dimensional analogy

S. B. Kuksin

University Paris Diderot, Paris, France

My talk is based on recent book [1] (which, in its turn, is based on my own
works and those of two my former PhD students Andrei Biriuk and Alex Boritchev).
Namely, I will talk about the viscous Burgers equation on the circle, perturbed by a
random force. The Burgers equation with small viscosity (and with various forces)
was suggested in late 1930’s by Jean Burgers as a model for turbulence in fictitious
one-dimensional fluid. I will explain that Sobolev norms of equation’s solutions admit
upper and lower estimates, asymptotically sharp as the viscosity goes to zero. This
assertion allows one to obtain the results for the solutions, being rigorous analogies
of the main predictions of the celebrated Kolmogorov theory of turbulence. Namely,
of the Kolmogorov “1/3-law” for increments of the turbulent velocity-fields and of
the Kolmogorov—Obukhov “5/3-law” for the energy spectrum of turbulence (I will
explain these laws). Then I will discuss the inviscid limit for the Burgers equation
and its relation with inviscid one-dimensional turbulence. The results were non-
rigorously obtained by physicists in 1990’s, and earlier by J. Burgers in 1948, even
more heuristically.
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Estimates of Green’s function of the bounded
solutions problem

V. G. Kurbatov

Voronezh State University, Voronezh, Russia

V.I. Kurbatova
Voronezh State University, Voronezh, Russia

Let A be a complex n x n-matrix. We suppose that the spectrum o(A) of A does
not intersect the imaginary axis. In such a case the differential equation

z'(t) = Az(t) + f(1), teR,

has a unique bounded on R continuously differentiable solution z for any bounded
continuous function f, and this solution possesses the representation

2(t) = / Gt — ) f(s) ds.
The function G is called Green’s function of the bounded solutions problem.
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Let A have k eigenvalues in the right half-plane Rep > 0 counted according to
their multiplicities, and m eigenvalues in the open left half-plane Rer < 0 counted
according to their multiplicities. Thus, &k 4+ m = n. Let

y" =min{Rep: p€o(A), Reu>0}, 7 =-max{Reu: p€a(A), Reu<0}.

We also set v =T +~7.
The following estimate is analogous to the Gelfand—Shilov estimate [1, p. 68] for
the initial value problem.

Theorem 1. Green’s function satisfies the estimate

m—1 i k+j
¢~ k+@—1 2l Afh*
G001 < nte ™t 3 T e
7=0 =0
k—1 s J :
+ L m+%—1 @[ Alm+
+a(=t)e? =0 |Z i
7=0 =0

where 1 is the Heaviside function.

Theorem 2. Let, in addition, the matrix A be triangular and be represented as the
sum A= D+ N of a diagonal matriz D and a strictly triangular matric N. Then

VAT (. 1(7|t\/2)
NG

GO < (n(t)e™ " +n(- ZHNH’“

where K, is the modified Bessel function of the second kind.
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Random motion in arbitrary direction: analytical
model and simulation

A. Kuznetsov
Voronezh State University, Voronezh, Russia

E. Shishkina

Voronezh State University, Voronezh, Russia;
Belgorod State National Research University, Belgorod, Russia

We study simulation and analytical models of a multidimensional random walk of
many agents. At each step, any agent can rotate by an arbitrary angle and continue
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moving in the direction selected. The analytical model gives the probability to find
an agent in the circular area of radius r at a given time point. The model includes
parameters that control the intensity of the walking process and the characteristics
of the environment. Works on this topic are mainly concerned with the discrete case
of a random walk. In this article, we consider the case of a random walk continuous
in spatial coordinates. We obtain some theoretical results for the analytical model
with the help of the mathematical apparatus designed to work with a generalized
translation. With the help of simulation, we reveal the meaning of parameters of the
analytical model.

Let agents A = {aj,...,as} be concentrated at the origin. So each agent aj;,

1 = 1,s, has position Xy at the time ty. Then it starts to jump from the centre

and undergoes displacements X, Xs,..., X, at times t1, to,....t,. The resultant at
n

t, is Sp, = Xo+ >, X,». The displacements are assumed to be independent, the

m=1
probability density of X, is pm(Xm), and the probability density of S, is to be
found.
Let l,, denote the length of m-th jump, m = 1,..,n. Let Pr(|S,] < r) =
Pr(|S,] < 7;l3,la,...,1,) be the probability that S, lies inside or on the circle of
radius r centred at the origin O. Then the following formula for Pr(|S,| < r) is valid:

9l-%,.% ® n 3
Pr(|Sn| < 7) = X(r)i/J%(m) I isaut)tstat,  v>0, (1)
0

where J,, is the Bessel function of the first kind [1], j,(z) = % JIn(z) is the
normalized Bessel function [2], and

x(r) = {
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=

Gromov—Hausdorff stability of global attractors
and inertial manifolds
K. Lee

Chungnam National University, Daejeon, Korea

The subject of dynamical systems concerns the evolution of systems in time. In
continuous time, the systems may be modeled by ordinary differential equations or
partial differential equations; in discrete time, they may be modeled by difference
equations or iterated maps. The emphasis of dynamical systems is the understanding
of geometrical properties of orbits and long term behavior.
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First we present some dynamic properties of the hyperbolic sets of smooth dynam-
ical systems (or flows) on compact manifolds like expansivity, shadowing property,
structural stability, etc.

We then discuss some recent and ongoing works on the dynamics of flows with
various expansive measures. In particular, we present a measurable version of Smale’s
spectral decomposition theorem for flows. More precisely, we see that if a flow ¢ on
a compact metric space X is measure expansive on its chain recurrent set CR(¢)
and has the shadowing property on CR(¢), then ¢ has the spectral decomposition.
Moreover, we consider the Gromov—Hausdorff perturbations of dynamical systems
from a measurable viewpoint.

Finally, we analyze the stability of dissipative reaction diffusion equations under
perturbations of the domain and equation. More precisely, we use the Gromov—
Hausdorff distances between two global attractors (or inertial manifolds) and two
dynamical systems to consider the continuous dependence of the global attractors
(or inertial manifolds) and the stability of the dynamical systems on their global
attractors (or inertial manifolds), respectively.
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Classical hypergeometric functions
and Jordan—Pochhammer systems

V. P. Leksin

State University of Humanities and Social Studies, Kolomna, Russia

It is well-known [1-3, 6] that the classic Gauss hypergeometric function is given
by the power series

F(a, b, cz) Z (c kk"

k=0

ere (a)p = = . are the Pochhammer symbols) and its formal multi-
h ”“(*)’“)k 1,2. he Pochh bols) and its formal multi
variable Lauricella analog

- an)k, (b)x|
F(n)a,a,.. ,Gn, b, €2) bn zk1~-~z’;"
D ( 1,42 ZO ‘k‘kl kn' 1
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(here |k| = k1 + - - - + k5, ) have the representation by the hypergeometric integrals

1
F(z.ab.¢) = mm o /tb 1 — et = t2)ady (1)
0
and
1 n
(n) b—1 c—b—1 N—a;

Fp/(z, a1,a2,...,a, b, ¢) = c—b /t (1-1¢) 1—[1(1—tzl) dt. (2)

0 =

These integral representations enable us to show that the Gauss function and the
Lauricella function have close connection with the integrable Jordan-Pochhammer
systems [4-6]

m

dy; = Z (Biyj(2) — Bjyi(2))

=1, j#i

d—2) iy 9 (3)
Zi — Zj

For the Gauss function, we have m = 2 and for the Lauricella functions, m = n+1. The
Gauss function and the Lauricella function are some components of basis solutions of
the Jordan—Pochhammer system (3) for some parameters (f1, ... 0Bm). We calculate
the parameters (1, ..., 3, via the parameters a;, i = 1,...,n, b, ¢ of the Gauss or
Lauricella functions and, in particular, describe all basis solutions of system (3) and
the generated monodromy group of (3) in terms of modifications of the Gauss and
Lauricella functions.
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Mixed boundary-value problems for elliptic
differential-difference equations
in a bounded domain

V.V. Liiko
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

Elliptic functional differential equations were studied by Ph. Hartman, G. Stam-
pacchia, A. B. Antonevich, V. S. Rabinovich, and others. Dirichlet, Neumann, and
general boundary value problems for elliptic differential-difference equations in a
bounded domain were considered in [1-4], see the bibliography there. In this work,
we consider mixed boundary-value problems for elliptic differential-difference equa-
tions. Such problems arise in the study of elastic deformations of three-layer plates
with corrugated filler in the case where two opposite borders are rigidly fixed, and
the other two are free [5].

The relationship between mixed boundary-value problems for strongly elliptic
differential-difference equations and nonlocal mixed problems for strongly elliptic dif-
ferential equations is established. The existence, uniqueness, and smoothness of a
generalized solution to these problems are proved.

This work is supported by the Ministry of Science and Higher Education of the
Russian Federation: agreement No. 075-03-2020-223/3 (FSSF-2020-0018).
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Resonant vibration amplitude of a beam
of variable length

V. L. Litvinov
Lomonosov Moscow State University, Moscow, Russia

K. V. Litvinova
Samara State Technical University, Samara, Russia

The resonance characteristics of viscoelastic beam with moving boundaries using
the Kantorovich—Galerkin method are examined in the article. The phenomenon of
resonance and steady passage through resonance are analyzed.

One-dimensional systems whose boundaries move are widely used in engineer-
ing [1]. The presence of moving boundaries causes considerable difficulties in describ-
ing such systems. Exact methods for solving such problems are limited by the wave
equation and relatively simple boundary conditions. Of the approximate methods,
the Kantorovich-Galerkin method described in [1] is the most efficient. However, this
method can also be used in more complex cases. This method makes it possible to
take into account the effect of resistance forces on the system, the viscoelastic prop-
erties of an oscillating object, and also the weak non-stationarity of the boundary
conditions.

The paper considers the phenomena of steady-state resonance and passage through
resonance for transverse oscillations of a beam of variable length, taking into account
viscoelasticity and damping forces.

Performing transformations similar to transformations [1], an expression is ob-
tained for the amplitude of oscillations corresponding to the n-th dynamic mode. Ex-
pressions are also obtained that describe the phenomenon of steady-state resonance
and the phenomenon of passage through resonance.

The expression that determines the maximum amplitude of oscillations when pass-
ing through the resonance was numerically investigated to the maximum. The de-
pendence of the beam oscillation amplitude on the boundary velocity, viscoelasticity,
and damping forces is analyzed.

In conclusion, we note that the above results make it possible to carry out a
quantitative analysis of the steady state resonance and the phenomenon of passage
through the resonance for systems whose oscillations are described by the formulated
problem.
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On algebraic approach in finding particular
solutions of certain nonhomogeneous ODEs

T. Lomonosov
NRU HSE, Moscow, Russian Federation

It has been long sought to represent the processes of calculus as operators. Al-
though the problem of solving nonhomogeneous linear ordinary differential equations
(ODESs) with constant coefficients is widely known (see, e.g. [1,2]), recently the author
of [3] proposed a method of finding a particular solution of the differential equation
in question using a matrix differential operator method.

We further develop that approach. We consider a specific function on the right-
hand side of the ODE as an element of a vector space. We show that the restriction
of the % operator on that space is its automorphism. Then, we use this fact to
show that there is always an invertible submatrix which allows us to find a particular
solution. Note that the similar method can be used to find particular solutions of
difference equations of the same kind.

We consider the higher-order nonhomogeneous linear ordinary differential equation
(ODE) with constant coefficients

y (@) +ary™ V(@) + .+ any(z) = f(2), (1)

where y € C"[a, b] is the unknown function, ay,...,ax are given numbers, and f €
C"[a,b] is a given function.
In the abstract, we present the most demonstrative theorem in our work.

Theorem 1. Let f € L}, o = L[e“® sin fx, e** cos Bz, . .., x°e*® sin Sz, x°e** cos Si]
in equation (1) be a quasipolynomial.

If complex numbers p = a+ Bi and @i are roots of the corresponding homogeneous
equation of multiplicity m, then we consider the particular solution y(©) € L:Zés =

Ko @ L', where

e = L[e™ sin Bz, e" cos Bz, . .. , ™ e sin B, 2™ Le™ cos Bi]

(Ko being the kernel of the operator on the left-hand side) and

L5 = Llz™e sin B, 2™ e® T cos B, ..., " e sin B, 2™ 5™ cos ).

In this case, we only seek the expansion coefficients of the solution in the space
Lm’é, and its expansion can be found from the system of equations R;>*y = f, where
Rms is obtained from the matriz corresponding to the restriction of the left-hand-
szde operator on L & by crossing out the first 2m columns and the last 2m rows,
and f is a vector- column obtained by expanding the right-hand side in the basis
{z™e** sin Bz, 2™ e** cos Bz, . .., x5 sin Bx, x5 e cos Br}.
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Analytical solution for fractional advection diffusion
equation with variable coefficients and source term

E.l. Mahmoud
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

In a bounded domain © = (0, L) x (0,7),0 < L,T < oo, consider the following one-
dimensional fractional advection diffusion equation with a spatial variable diffusion
coefficient and a source term:

0%w(s,t)  0*w(s,t)

Sia = e DE(A(s)w(s,t)) + f(s,t), 0<a,B <1, (1)

with the initial and boundary conditions

w(s,0) = ¢(s), 0<s<L, (2)
w(0,t) =w(L,t) =0, 0<t<T,

where « and § are parameters describing the fractional order of the temporal and
the spatial derivatives, respectively, (A(s) > 0) € C'(L,0) is the spatial variable
diffusion coefficient and f(s,t) € C%(L,0) N C1(0,T) is the source term, % is
the Caputo fractional derivative operator in the time variable, and D?(h(s,t)) is the
fractional Riemann—Liouville derivative operator in the spatial variable [1]. In this
paper we carry out a detailed discussion and development of the method of separation
of variables (the Fourier method) for the solution of fractional advection diffusion

equation (1), (2), where the following theorem holds.

Theorem 1. Suppose f(s,t) € C%(L,0) N C*0,T), A(s) = s > 0, and ¢(s) €
C(0,L). Then the reqular solution w(s,t) € C%(L,0) N CY(0,T) of boundary value
problem (1), (2) can be represented in the form

i (6mBa(-Amt®) + / (t = 1) Baa(=Am(t = 7)) fn(7)dr ) (3)

m=1

= o L2k + B) — A\ I'(2k)
3+; HH I'(2k +2) )

Here E, g is the Mittag-Leffler functions [2], while ¢, and f,,,(t) are the decompo-
sition coefficients of the functions #(s), f(s,t), respectively, in a basis of the functions

n T(2k Am (2K
Sm (8, Am) = (s + Z s? H (QJ}?TH)@))
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Role of space in an eco-epidemic predator—prey
system with the effect of fear
and selective predation

S. Sh. Maity
University of Kalyani, Kalyani, India
S. Pal

University of Kalyani, Kalyani, India

A predator-prey model with disease in prey is investigated in the present study. We
incorporate fear effects in susceptible prey’s growth rate and the disease transmission
from infected to susceptible prey. The predator population are assumed to distinguish
susceptible and infected prey, and they avoid the latter to reduce fitness cost. Also,
we consider that additional foods are supplied to the predator population, and the
predators follow logistic growth due to that. The level of fear responsible for the
reduction of the birth rate of susceptible prey is found to cause instability in the
system. The rate of infection and the selectivity behavior of predators also destabilize
the system. In contrast, the level of fear responsible for the eradication of the disease
prevalence can restore stability of the system by evacuating persistent oscillations.
Providing additional foods to predators at a lower rate induces chaotic dynamics in
the system. To investigate different factors affecting the species distributions, we
consider that the prey and predator populations perform active movements in the
spatial directions for their biological relevance. The diffusive system is analyzed,
and the numerical results show different spatial patterns exhibited by the prey and
predator populations.
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Estimation of the exponent of stable solutions
to functional differential equations

V.V. Malygina

Perm National Research Polytechnic University, Perm, Russia

The definition of the exponential stability of a linear differential equation with
aftereffect generalizes the classical definition of the exponential stability of an ordinary
differential equation and implies the existence of constants N, > 0 such that for each
solution z: [tg,00) — R the estimate |z(t)| < Ne=Y¢=%)||p| is valid, where ¢ is the
initial function giving rise to the solution. For equations with aftereffect, the problem
of estimating the constants /N and =y relevant in application to modeling real processes,
is nontrivial even for the case of scalar equations. The problem of exponential stability
cannot be considered completely solved if estimates for IV and ~ are not specified or
an algorithm for the efficient calculation of them is not found.

For the exponentially stable equation

h
z(t) + az(t) + /x(t —s)dr(s) = f(t), t=0, (1)
0

where a € R, h > 0, r: [0,h] — R is a function of bounded variation, r(0) = 0, the
integral is understood in the Riemann—Stieltjes sense, and f is a locally integrable
function, we propose an efficient method for obtaining two-sided estimates of the
fundamental solution. The method allows us to find both the exponent and the
coefficient of the exponential estimate of a solution with an arbitrary accuracy. It
essentially relies on the a priori assumption that the fundamental solution is positive
and on complete qualitative description of its behavior.

By the fundamental solution of equation (1) we mean a function z( solving equa-
tion (1) for f(t) = 0 and such that x9(0) = 1. As is known, every solution of
equation (1) can be expressed in terms of the fundamental solution.

h
Denote F(A\) = A+a+ [e *dr(s), A e R.
0

Theorem 1. Suppose the function r is nondecreasing on [0,h]. Then if for some
real w > 0 the conditions F(—w) = 0, F'(—w) > 0 are fulfilled, then the fundamental
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solution of equation (1) has the two-sided estimate

1
F(-w)

—wt

et L zo(t) < e

Theorem 2. Suppose the function r is nonincreasing on [0,h]. Then if for some
real w > 0 the condition F(—w) = 0 is fulfilled, then the fundamental solution of
equation (1) has the two-sided estimate

e(w—a)he—wt < ,Iio(t) < e—wt'

This work was supported by the State contract of the Russian Ministry of Educa-
tion and Science (contract No. FSNM-2020-0028).

Local dynamics of a second-order equation
with a delay in the derivative

I.N. Maslenikov

Yaroslavl State University named after P. G. Demidov, Yaroslavl, Russia

Consider a second-order differential equation with delayed feedback, which is an
implementation of the modified Tkeda equation with a time delay:

d?y dy dy
5W+E+6y_F<E(t_T)>' (1)

Here £ and ¢ are small and proportional parameters 0 < ¢ < 1, § = ke, 7 is a
delay parameter, real and positive. The function F' is sufficiently smooth, such that
F(0) = 0. Thus, equation (1) has a zero equilibrium state. Let study the local
dynamics in the vicinity of the equilibrium state, in the phase space 0[171,0}- Note
that the problem under consideration is singularly perturbed.

The paper [1] considers a similar model of an optoelectronic oscillator in which
the parameter ¢ is not small.

The characteristic quasi-polynomial of the linearized at zero equation (1) has the
form:

D e (2)

It is shown that for |£1] < 1, the zero equilibrium state is stable, and for |51| > 1,
it is unstable. In critical cases 81 = *1, the characteristic equation has an infinite
number of roots tending to the imaginary axis at € — 0. Thus, the critical cases have
infinite dimension.

To study the behavior of solutions in the case of §; = +1, quasi-normal forms
are constructed — special nonlinear parabolic equations that do not contain small
parameters, the solutions of which give the main part of asymptotic solutions of
equation (1) uniformly over ¢ > 0 in the residual.
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Exact solution of the BVP for the Helmholtz
equation in a nonconvex angle with periodic
boundary data

A E. Merzon

Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mich. México

P N. Zhevandrov

Universidad Michoacana de San Nicolds de Hidalgo, Morelia, Mich. México

JE. De La Paz Mendez

Universidad Auténoma de Guerrero, Cd. Altamirano, Guerrero, México

We consider the following model boundary value problem in a plane angle @ of
magnitude ® > 7 with a complex wave number w € C™ :

(—A —wu(z) =0,z € Q,
{ u@)| = h@), @] = R
Iy s

Here T'; for [ = 1,2 are the sides of the angle Q, f; = e™*l#l k; > 0,1 =1,2
Problems of this type arise in many areas of mathematical physics, for example in
diffusion of a desintegrating gas. The problem differs from numerous similar problems
in which the boundary data are summable functions. Using the method of complex
characteristics [1], we reduce the problem to the Riemann—Hilbert problem for a Neu-
mann data on the Riemann surface of zeros of the symbol of the Helmholtz operator.
We solve this problem in quadratures and we give the solution u in the Sommerfeld
type form. We find the asymptotics of the solution at the vertex and we describe its

uniqueness class.
This paper was supported by UMICH and CONACYT (México).
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Quantisation of free associative dynamical systems

A.V. Mikhailov
University of Leeds, Leeds, UK

Traditional quantisation theories start with classical Hamiltonian systems with
variables taking values in commutative algebras and then study their non-commuta-
tive deformations, such that the commutators of observables tend to the corresponding
Poisson brackets as the (Planck) constant of deformation goes to zero. I propose to
depart from dynamical systems defined on a free associative algebra 2(. With this
approach, the quantisation problem is reduced to the problem of finding a two-sided
ideal J C U satisfying the following two conditions: the ideal J has to be invariant with
respect to the dynamics of the system and to define a complete set of commutation
relations in the quotient algebras 2y = 2 /J, see [1].

To illustrate this approach, I consider the quantisation problem for the Volterra
family of integrable systems. In particular, I show that odd degree symmetries of the
Volterra chain admit two quantisations, one of them is the well-known quantisation of
the Volterra chain, and the other one one is new and not a deformation quantisation.
The periodic Volterra chain admits bi-Hamiltonian and bi-quantum structures [2].
The method of quantisation based on the concept of quantisation ideals proved to be
successful for quantisation of stationary Korteveg-de—Vries hierarchies [3], the Toda
chain, and non-abelian systems of two homogeneous quadratic equations.
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Asymptotics of the 1D shallow water equations
in the form of running waves in a basin
with variable bottom with vertical and gentle walls
D. S. Minenkov

Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia

M. M. Votiakova
Moscow Institute of Physics and Technology (National Research University),
Dolgoprudny, Russia

The Cauchy problem for the one-dimensional shallow water equations with variable
bottom D(z) and localized initial data is considered [1]. The domain under considera-
tion is confined by a vertical wall on the right, where the Neumann conditions are set,
and a movable border on the left. Asymptotics of the Carrier—Greenspan transform
is used to obtain equations with fixed boundaries and small nonlinear terms, which
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allows one to construct (formal) asymptotics to the initial problem [2]. Wave profile
changes and its relation to the Maslov index [3] are of interest.

The work is supported by grant RSF 21-11-00341. The authors are grateful to
S. Y. Dobrokhotov, V. E. Nazaikinsky, and A. I. Shafarevich for their support and
valuable discussions.
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On neural network trainings
C. A. Morales

Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

The training of a neural network is very important in machine learning [2]. It
is usually done through certain optimization methods such as the gradient descent
(stochastic or not [1]). There are however situations where these methods fail. This
is, for instance, the case where the weights associated to the network are not real or
complex numbers or belong to manifolds or even fractal sets. These problems make
us to consider situations where the weights lie in a general metric space. We have
an error function and the problem is therefore to find what will be referred to as a
training for that error. We will consider training as just an iterative process carrying
an initial weight to be close to minimize the error. In this lecture we want to formalize
this idea and characterize the trainings for a given error function.
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Elliptic differential-difference equations
with nonorthogonal translations in half-spaces

A.B. Muravnik
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

In the half-space {(x,y)‘x eR” y > 0}, the Dirichlet problem with summable
boundary-value functions is considered for the equation

Zuzjzj (J:ay) + uyy(xyy) =+ ZQJUmjmj (1’ + hjay) = 07 (1)

j=1 j=1
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where

ap := max [a;| <1, (2)
j=1ln
while hj := (hj1,...,hj,), j = 1,n, are arbitrary vectors from R™.

We construct Poisson-like representations of solutions of such problems, treated
in the sense of generalized functions, prove the infinite smoothness of these solutions
outside the boundary hyperplane, and prove that they and all their derivatives extinct
as y — 400 uniformly with respect to z € R™.

This work was supported by the State contract of the Russian Ministry of Educa-
tion and Science (contract No. 175-03-2020-233/3, FSSF-2020-018).

On destruction of adiabatic invariance
A. |. Neishtadt

Space Research Institute, Moscow, Russia;
Loughborough University, Loughborough, UK

We present a review of some mechanisms of destruction of adiabatic invariance
in slow-fast Hamiltonian systems close to integrable ones. Adiabatic invariants are
approximate first integrals of such systems. Conservation of these adiabatic invari-
ants plays a fundamental role in many problems of plasma physics, accelerators of
charged particles, waveguides. We discuss destruction of adiabatic invariance due to
the passage through a separatrix, the passage through a resonance, and the change of
mode of motion in systems with elastic collisions. We provide examples from charged
particle dynamics. The talk is based on review papers [1] and [2]. The work was
supported by the Leverhulme Thrust (RPG-2018-143).
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Asymptotics of the solution to the Cauchy problem
for a singularly perturbed differential operator
transport equation with small diffusion

A.V. Nesterov

Plechanov Russian University of Economics, Moscow, Russia

A.V. Zaborskii
“RADICO", Scientific Production Company, Obninsk, Russia

We construct an asymptotic solution of the Cauchy problem for singularly per-
turbed differential operator equation

2(U, + ZD = L,U +eF(U,p) + ¢ ZBW,UM 5> (1)
=1
|1Z]| < o0, > 0,p € {P},U(z,0) = U°(z,p,e), (2)

where U = U(Z,t,p); linear operators L, B act with respect to the variable p, 0 <
€ << 1is a small parameter. The linear operator L, has the simple zero eigenvalue
(with an eigenfunction hg(p)), the other eigenvalues have negative real parts. Under
certain conditions imposed on the initial data, the coefficients D, the function F,
and the operators Ly, By, the asymptotic expansion (AE) of the solution of problem
(1)-(2) is constructed as

N
U®,t,e) =Y & (s:(C,t,p) +pil,7p)) + R=Un + R, (3)
i=0
here the stretched variables (, &, 7 are selected in a certain way. The main term of
AE (3) has the form so(¢,t,p) = ©o(C,t)ho(p), where ¢o((,t) is the solution of the
Cauchy problem for an equation being a generalization of the Burgers-Korteweg-de
Vries equation in the case of many spatial variables,

N N N
Cort Y Mijeoce, + > (Fiers(po))e+ > Bijkerspocice =0 (4)
i,j=1 i=1 i,7,k=1

This research was performed in the framework of the state assignment in the field
of scientific activity of the Ministry of Science and Higher Education of the Russian
Federation, project ” Development of the methodology and a software platform for the
construction of digital twins, intellectual analysis and forecast of complex economic
systems”, grant no. FSSW-2020-0008.

References

[1] Zaborsky A.V., Nesterov A. V. Asymptotic expansion of the solution a singularly
perturbed differential operator equation of a nonlinear equation in the critical
case. Mathematical Modeling, 26, No. 4, 65-79 (2014).

[2] Zaborsky A.V., Nesterov A.V. Zaborsky A.V., Nesterov A.V. Asymptotic ex-
pansion of the solution of a singularly perturbed differential-operator equation of
a nonlinear equation with variable coefficients, Mathematical Modeling, 28, No. 1,
117-131 (2016).

86



[3] Vasilieva A.B., Butuzov V.F. Singularly Perturbed Equations in Critical Cases
[in Russian]. — Moscow: MGU, 1978.

Mathematical modelling of immunodominance

D. A. Neverova
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

Human immune response to viral infection consists of innate and adaptive immune
responses. Innate immune response is mainly determined by interferon produced by
infected cells and preventing (or down-regulating) further infection of uninfected cells.
It is followed by the adaptive immune response provided by T and B lymphocytes.
Adaptive immune response can be accompanied by immunodominance which means
that there are different types of antigen-specific lymphocytes and antibodies which
compete with each other, and some of them can dominate or even eliminate the
others. Moreover, dominating antibodies are not necessarily most efficient for virus
elimination. In this case, immunodominance can weaken the immune response. In
this work we will develop a new mathematical model of immunodominance and will
use it to describe some aspects of this phenomenon.

This work is supported by the Ministry of Science and Higher Education of the
Russian Federation, agreement No. 075-03-2020-223/3 (FSSF-2020-0018).

Structural stability and limit shadowing for flows

N. Nguyen

Chungnam National University Daejeon, Korea

In this talk, we study a relationship between the structural stability and another
type of limit shadowing (called L-shadowing property) for flows. In the first part,
we characterize the L-shadowing flows on compact metric spaces by using the local
stable and unstable sets. Moreover, we show that any L-shadowing flow on a compact
metric space admits the spectral decomposition.

In the second part, we prove that any structurally stable C'' vector field on a
compact smooth manifold has the L-shadowing property, and study the C' interior of
all L-shadowing C! vector fields on a compact smooth manifold (this is a joint work
with Keonhee Lee).
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On the operator of translation along the trajectories
of solutions of random differential inclusions
V. V. Obukhovskii

Voronezh State Pedagogical University, Voronezh, Russia

S.V. Kornev

Voronezh State Pedagogical University, Voronezh, Russia

E.N. Getmanova
Voronezh State Pedagogical University, Voronezh, Russia

The method of the translation operator and the method of guiding functions,
whose foundations were laid by M.A. Krasnosel’skii and A.I. Perov (see [3]), were
extended to the study of periodic solutions of differential inclusions (see [2] and ref-
erences therein).

Let (€2, %) be a complete measurable space, £ denote the o-algebra of the Lebesgue
subsets of the interval [0,7T], B(R™) be c-algebra of the Borel subsets of R™ and
Kv(R™) be the collection of all non-empty convex compact subsets of R™ .

We consider the problem of the operator of translation along the trajectories of a
random differential inclusion of the form:

7' (w,t) € Flw,t,z(t)) ae.te[0,T], (1)
2(w,0) = y(w), (2)
where the multimap F : Q x [0,7] x R®™ — Kv(R") is a random u-multimap, i.e.
(Fol) F is measurable with respect to the o-algebra ¥ @ £ @ B(R™),

(Fu2) for any w € Q and a.e. t € [0,T], the multimap F(w,t,-) : R" — Kv(R") is
upper semicontinuous,

(Fw3) there exists a function ¢ :  x [0,7] — R such that c¢(w, -) is integrable on [0, 7]
for every w € Q, ¢(-,t): @ — R is a measurable function for a.e. ¢t € [0,7] and
[F (st )| := sup{|z] : z € F(w,t,0)} < cw, t)(1+[4]).
Notice (see [1, Theorem 4.2]) that under the conditions above, problem (1), (2)
has a random solution, i.e., there exists a function z: Q x [0, 7] — R™ such that

(i) for each w € Q the function x(w,-) is absolutely continuous and satisfies rela-
tions (1), (2),
(#4) the mapping w € Q — z(w, ) € C([0,T]; R™) is measurable.

Let A(w,y) C C([0,7];R™) denote for a given w € 2 the set of all solutions
of problem (1), (2) with initial value y € R™. Consider a continuous mapping
€: C([0,T;R™) — R”™ defined as &(z) = =(T).

Definition 1 (see [4]). A multimap II: Q x R™ — R"™ defined as the composition
II(w,y) = £ o A(w,y), is called the multioperator of translation along the trajectories
of solutions to problem (1), (2).

Theorem 1. The multioperator of translation I is a random u-multimap.

This work was supported by the Ministry of Education of the Russian Federation
(contract No. FZGF-0640-2020-0009).
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Improved resolvent approximations in
homogenization of higher order elliptic operators

S. E. Pastukhova

MIREA — Russian Technological University, Moscow, Russia
In the space R?, d>2, we consider the following equation of even order 2m>4:

wt € H™(RY), (A +1u®=f feL*R),
Ac=(D™ 3 D*age(x)DP), (1)

la|=|Bl=m

with e-periodic coefficients a,4(2) = aas(y)|y=c-12, €>0 is a small parameter. Here,
a=(ai,...,qq) is a multiindex of length |a|=a1 +. ..+ aq, a;> 0 are integers; D* =
DY ...D3?, Diy = Dy, i = 1,...,d; the coefficients ang(y) are real, measurable,
1-periodic (Y = [~1/2,1/2)¢ is a periodicity cell) and satisfy the conditions (C):

Uap = pa;  ||GapllLe(yv) < A1, Vo, B, |af =8| =m,

/ Z top()DP DY da > )\0/ Z |DYp|?dx Yo € C°(RY)
* Jal=181=m *lal=m
with some positive constants Ag and A;.
It is known from long ago [1] that the family {Ac}c is G-convergent to the limit
operator A=(—1)" Y. D%,sD? which is of the same class (C) but with con-

lo=[B|=m
stant coefficients. Recently [2], it was proved that (A.+1)"1=(A+1)"14+0(¢?) in the
operator norm in L2(R%). Now we find the following approximation for the resolvent
(A-+1)~! in the energy operator norm (i.e., from L?(R?) to H™(R?)):

(A1) =(A+1) 4™ K ()" K i1 (€)+0(2), 2)

where K,,(¢) and K,,4+1(e) are certain correctors. As for the solution u® to (1),
relation (2) means that ||u—v®|| gm ga)<Ce?|| f || 12(ra), Where C=const(Ao, A1, d) and
v¢(2)=u(z)+e™>_, N, (z/e)O° DVu(z)+e™ 1Y 5 Ns(x/e)O° D2u(x) with summation
over all indices 7, |y|=m, and 8, |6|=m+1. Here, u=(A4+1)"1f; N, (y) and N;(y) are
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solutions to the cell problems on Y'; ©° is the smoothing operator needed due to lack
of regularity of data in (1).

Asymptotic of type (2) was earlier [3] found under conditions (C) without assum-
ing symmetry of coefficients. In this case, the asymptotic turns to be more complicated
in comparison with (2).
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Reflection of functions, geometry in space

and regularity of the Laplace transform
A.V. Pavlov

Moscow Institute of Radio-technics, Electronics and Automatics — RTU, Moscow,
Russia

The first theme of the article is the theorem 1. In the theorem 1 we consider a two
scalar production in the linear subspace of the 1,22 vectors, if ||z1|| = ||x2]|, and
@1, Q2 are the diagonals of rhombus with the x1, x2 sides. The first production is the
usual (z,y) = (z,y)1 production. The second production we can determine with help
of the equality

(X1, X2)2 = C1R1 + C2Ry,  e1 = x1/||m1|], ea = z2/||22||, (21,22) #0,
X1 =Crer +Coea, Xo= Rie1 + Raoeo.

From point of the new production it is possible to suppose (see [1, theorem 1]), that
the sides of rhombus are orthogonal as result of the A; orthogonal transformation
with the A matrix: (1/4/2(1,1) is the first line, and (1/v/2(1,—1) is the second line
of the A matrix in the eq,eq basis, A2 =E,A=A"1=AT A, = Al_l.

Theorem 1. (A1y1, A1y2) = (A1y1, A1y2)2 for all the y1,y2 vectors. We can use
(Ary1, A1y2)2 = (A1(aner + Biez), Ar(azer + faez))2 =

= ajag(Arer, Arer)s + f152(Arer, Ares)s = J,

(we use (Are;, Arej) = (Are;, Arej)e = 0,4 # j), with help of (Are;, Arei)s = 1,
if (ei,ei)2 = 1,0 = 1,2 (as the result of the orthogonal transformation of the eq, ey
vectors, (e1,e2)2 = 0), (Are;, A1e;) = 1,4 = 1,2 — it is the same length 1 as on the
sides of the rhombus), and

J = ajaz(Arer, Arer) + B1B2(Ares, Arez) = (Aryr, A1ye)i,

oyer + Bieg = y4,1 = 1,2,
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From the theorem we get
(AlAl.Il, A1A11‘2) = (A1A1I1,A1A1$2)2 = O, A1A1I1 = 1‘1,A1A1£E2 = X3.

As a result of the u(z,y) = u(—=z,y) = u(zx — 24) = U(z,y) formula (for all
x=A>0,2=Rep > 0) we get a basic fact of the second theme, if p =z +iy = A+
iy, A >0,y € (—o00,00); in the formula the U(z,y) = u(z,y) function is the complex
part of the regular f(p) = u(x,y)+iv(z,y) function, if Re f(p) = f(p),p € (—ioco,ic0),
or F(p) = f(p), by definition, F(p) = f(p —2A) for all A=z = Rep > 0 (F(p) is
the “moving field”). The F(p) = f(p) equality is possible for some regular functions
(from some point of view). The principle possibility of the z = f(p) representation of
the points of the plane we obtain from the next reasoning: the z = f(p) equations of
the representation of the points of the plane (in the primary system of co-ordinates
with the (0,0) center) for the second system of co-ordinate with the (0, a) centers is
equal to z = g(w), a > 0 (for the both systems co-ordinates the z,w variables are the
complex variables); if p and w is the same one point on plane, we obtain r — w = a,
and z = f(p) = g(p—a), but it is impossible: in the expression the p, w points are not
the same points (in the situation for the primary representation-function we obtain
the new z = g(p — a) equation with p = w as the same point). But we have just
assumed, that p, w is the same one point in the w = p — a equality. The same result
we obtain from the fact: the same equation is the result of change of the direction
of the OY axis and the rotation around the OX axis of the F(p) field with help of
regularity of the rotation.
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Fractional differential equations
and their approximations

S. Piskarev

Lomonosov Moscow State University, Moscow, Russia

This talk is devoted to the well-posedness and approximation for nonhomogeneous
fractional differential equations

Du(t) = Au(t) + f(t), u(0)=u’

in a Banach space E, where 0 < o < 1 and the operator A generates analytic a-
resolution family. First of all, the same way as for the integer derivative, we get a
necessary and sufficient condition for the well-posedness of the nonhomogeneous [2]
fractional Cauchy problem in the Holder spaces Coﬁ ([0,T); E). Second, by using im-
plicit and explicit difference schemes, we deal with the full discretization of the so-
lutions of nonhomogeneous fractional differential equations [1] in time variables, and
get the stability of the implicit difference scheme and the explicit difference scheme.
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Finally, the order of convergence was obtained in the space C([0,T]; E) when ap-
proximating nonhomogeneous fractional differential equations by the implicit and the
explicit difference schemes. For the uniform grid, it is O(7%).

We also consider a non-uniform grid. The stability and accuracy estimates for a
proposed finite difference scheme [3,4] are obtained.

This research was partially supported by the grant from Russian Science Founda-
tion (RSF) No. 20-11-20085.
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Solvability of a linear degenerate equation
with the Dzhrbashyan—Nersesyan derivative

M. V. Plekhanova

Chelyabinsk State University, Chelyabinsk, Russia;
South Ural State University, Chelyabinsk, Russia

E. M. Izhberdeeva
Chelyabinsk State University, Chelyabinsk, Russia

Let L € L(X;Y), M € CI(X;Y), and Dy be the domain of an operator M. Define
the L-resolvent set p“(M) = {u € C: (uL — M)~' € L(Y;X)} of an operator M,
and denote RY(M) := (uL — M)~'L, Lt := L(uL — M)~'. An operator M is called
(L,0)-bounded if Ja > 0: Yu € C (Ju| > a) = (u € pL(M)).

The operators P = 5= [RE(M)dp € L(X), Q = 5 [ LL(M)du € L(Y) are

2me 27

2! 8!
projections. Put X0 = ker P, X! = imP, )° = ker Q, V' = imQ. Denote by L (M)
the restriction of the operator L (M) on X* (Dy;, = Dy N XF), k = 0,1. Denote
G := My 'Ly. For p € Ny := NU {0}, the operator M is called (L, p)-bounded if it is
(L,0o)-bounded, GP # 0, and GP+1 = 0.

Consider the initial value problem

D%x(0) =z, k=0,1,....,n—1, (1)
for the linear inhomogeneous fractional order equation
D% Lx(t) = Mx(t) + g(¢), (2)
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in which D" is the Dzhrbashyan—Nersesyan fractional derivative defined according
to a set of numbers {ag, a1,...,an},0<ar <1, k=0,1,...,n, g € C([0,T]; D).

A solution to problem (1), (2) is a function z : (0,7] — Djs such that Mx €
c((0,7); ), D2 € C([0,T]; X), k=0,1,...,n—1, DLz € C((0,T]; X), equality
(2) is valid for all t € (0,T], and conditions (1) hold.

Theorem 1. Let the operator M be (L,p)-bounded, 0 < oy, < 1, k=0,1...,n, o, >
0, vp+a, >1,ge€C(0,T);Y), (DG My (I-Q)g € C’((O,T],X), l= 0, 1,...,p,
Do (DG} My (I — Q)g € C([0,T);X) for k = 0,1,...,n — 1, 1 = 0,1,...,p,

P

z, € X satisfy the conditions (I — P)xy, = —D > (DG)'My (I — Q)g(t)|i=o0,
1=0

k=0,1,...n— 1. Then there exists a unique solution to problem (1), (2), and this

solution can be written in the form

n—1
=3 t7Eq, o 1(t7" Ly M) P+
k=0
t p
+ / (t — 57" By o (£ — )7 LTI M) LT Qg(s)ds — S (D G) My (T — Q)g().
0 =0

This work was supported by the Grant of the President of the Russian Federation
for support of leading scientific schools (project NSh-2708.2022.1.1).
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Geometric flows and shape optimization

P.I. Plotnikov

Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia

The talk is devoted to the applications of the theory of geometric flows to shape
optimization problems. As an example, we consider the problem of identifying the
shape of elastic inclusion in 2D membrane. Assume that elastic material occupies
a bounded region Q@ C R? with the smooth boundary 9. The elastic inclusion
occupies the subdomain ; C  with the boundary I'. We also assume that the curve
I' admits the parametrization x = (), § € R! /27Z!. The equilibrium equations for
the displacement field u : Q — R! have the form

div (aVu) =0 in Q, u=fcW/2HQ) on Q. (1)
Here the function a is defined by the equalities a = 1 in Q\ ;, a = ao in Q;,

ag = const > 0, and f is a given displacement field. The problem of the identification
of the inclusion is formulated as follows. For a given function g : 9Q — R, it is
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necessary to find T" such that the solution to problem (1) satisfies the extra boundary
condition
Vu-n=g on 0. (2)

This problem is ill-posed. Its approximate solution can be found by solving the
variational problem IrpiﬁJ (T"), where A is some class of admissible curves and the
€

Cohn—Vogelius cost functional J is defined by the equality
J() = / aV(v — w) - V(v — w) da. 3)
Q

Here v, w : 2 satisfy equation (1) and the boundary conditions v = f, aVw-n = g on
0f). The question is the construction of a robust algorithm for the numerical study
of the identification problem. The standard approach is to use the steepest descent
method based on the shape calculus, see [1,4] and references therein. The main idea
is to study the shape derivatives dJ of J. Without loss of generality we may restrict
our considerations by the class of twice differentiable immersions 7 : S' — R? with
I' = 4(Sh). Choose an arbitrary vector field ¢ : ST — R? and consider the immersions
7:(0) = v(0) + tp(0), t € (—1,1). The shape derivative dJ = ®n : ' — R! is defined
by the equality

o6~ [ | " a(0)¢ o,

where n is the inward normal to 9€2; = I'. The shape derivative of the Cohn—Vogelius
functional is given by the formula

dJ = {2(aVv - n[d,v] —aVw  n[d,w]) — [aVv: Vv —aVw - Vw]| }|0py[n.  (4)

In the steepest descent method, the optimal shape I'gp; : & = Yopt () is determined as
the limit v, (0) = tlim ~v(0,t), where v(6,t) is a solution to the Cauchy problem
—00

Oy = —dJ(y) ~(0,0) = 0(0). (5)

However, the analysis of problem (5) meets serious difficulties. The way to cope with
these difficulties is to use the regularization of the cost functional. We define the
regularized cost function using the natural geometric quantities: the Euler elastic
energy & () and length £(7),

£,(T) = %/F|k2\ds, c(r)z/F ds.

Here k(0) = 9%v(0) is the curvature of I'. Note that there is a growing massive of the
literature devoted to the problem on long-time evolution of closed curves moving by
the gradient flow of the elastic energy. In particular, we mention seminal paper [2].
In order to avoid the problem of self-intersections of I', we consider the modified
elastic energy. By virtue of the 1-dimensional version of Li—Yau inequality, see [3],
a curve I' has no self-intersections if &L < £ L*. Here the quantities £ and L*
correspond to the energy and length of the co-shaped Euler elastica. We define the
modified elastic energy E(I') by the equality

EI) =&T) + (14 H(&T)LT))) L(T),
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where H : [0, & L") is a smooth, nonnegative, monotone function such that H(s) — oo
as s — & L*. The gradient flow for the modified elastic energy is determined by the
evolution operator equation

Oy = —edE() = dJ(T), ~(6,0) =7(9), (6)

where ¢ is a small positive parameter. We prove that Cauchy problem (6) has a
unique strong global solution. We also prove that this solution converges to a critical
point of E as t — oco.
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Behaviour of solutions of the traffic flow
mathematical model
M. A. Pogrebnyak

P. G. Demidov Yaroslavl’ State University, Yaroslavl’, Russia

This paper presents an investigation of the traffic flow mathematical model de-
scribing the movement of NV € N vehicles. This model is represented by the system

Umazx,n — jjn—l(t - T)

I e AT

Tt —7T) —2p(t) —lne
Tn(t) =An, Zn(t) =v,, forte|[—7,0],

of delay-differential equations, where Az, (t,7) = xp—1(t — 7) — x,(t) is the distance
between adjacent vehicles, 7 is the driver response time, a,, > 0 and ¢, > 0 are the
coeflicients describing technical characteristics of vehicle acceleration and decelera-
tion, respectively, Umqe > 0 is the maximum desired speed, [, is the safe distance
corresponding, [, . = I, — ¢ with an additive ¢ to prevent a vehicle from deceleration
with infinite speed when Az, (¢, 7) becomes close enough to I,,, k, > 0 and s,, > 0 are
driver behavior parameters, where k,, describes the smoothness of the vehicle driver
movement adapting the speed to the speed of the one in front, A, is the initial position
of the vehicles, v,, is the initial speed of the vehicles, and R,, is a relay function as
follows:

)

1, if Aza(t,7) > )
R — 219

0, if Azp(t,7) <

n

+ ln,
2pg
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where p is the friction coefficient and g is the acceleration of gravity. The function
R(Ax,(t,7)) describes the “acceleration-deceleration” switch.

The analysis of stability of a uniform driving mode was carried out for the model.
This driving mode assumes that all vehicles are moving with the same speed vy,q, at
a distance Ac, = ¢, — ¢,—1 from each other, where ¢, is a decreasing sequence. For
any decreasing sequence ¢, there exists a solution of system (1) of the form

Zn(t) = cn + Umazt.
The stability of such a solution depends on the signs of the expressions
dp = —TUmaz + Cn — Cn—1 — lne.
The following theorem is valid.

Theorem. If the inequality d,, > 0 holds for all n, then the uniform mode is stable.
If the inequality d; < 0 holds for at least one i, then the uniform mode is unstable.

It follows from the theorem that if all the vehicles of the flow move at a fairly
large distance from each other, then this driving mode is stable. Stability is lost
by increasing the speed vy,q,, the driver response time 7, the safe distance between
vehicles [,,, or by reducing the distance between two adjacent vehicles Ac,.

Some remarks on a formula for Sobolev norms due
to Brezis, Van Schaftingen, and Yung

A. Poliakovsky

Ben Gurion University of the Negev, Be'er Sheva, Israel

We provide answers to some questions raised in a recent work by H. Brezis, J. Van
Schaftingen, and P.-L. Yung [1,2] concerning the Gagliardo semi-norm |u|y .« com-
puted at s = 1, when the strong LY is replaced by weak L?. In particular, we address
generalization of the results in [1,2] for a general domain and non-smooth functions.
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On stability of stationary solutions in mathematical
models in natural sciences and humanities

M. V. Polovinkina

Voronezh State University of Engineering Technologies, Voronezh, Russia

|. P. Polovinkin

Voronezh State University, Voronezh, Russia;
Belgorod State National Research University (BelGU), Belgorod, Russia

We consider the initial boundary value problem for a system of partial differential
equations

Jus
;t =9, Auy + Fy(u), ©=(21,...,2,) €QCR™, t>0, (1)
Oug
HsUs +775—> = Bs(x)v
( ov €N
2+ >0, us =0, s =0, ps = const, 15 = const, (2)
us(2,0) = ul(z), s=1,...,m, (3)

where Q is a bounded domain with piecewise smooth boundary 9, 7 = v is a unit ex-
ternal normal vector to the boundary 9 of the domain Q, u = (u1(z, 1), ..., un(z, 1)),
P 20, u = (ur(x,t),...,um(z,t)), ¥s 20, s =1,...,m, A is the Laplace operator
defined by the formula
Av = Z 8211/61"?.
j=1
Let w = w(z) = (w1 (1, -, Tn)y .-+, Wn(x1,...,2,)) be a stationary solution of
initial boundary value problem (1)—(3), functions Fy be differentiable at w,
Agp = (OF,(w)/0zk, +OF)(w)/0z2s,) /2 — Os¥s/d%, 5,k = 1,...,m.

The negative definiteness of the quadratic form

m m
E E Ak 212,

s=1k=1
is a sufficient condition for the stability of the stationary solution.
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Spectral asymptotics for fourth-order differential
operator
D. M. Polyakov

Southern Mathematical Institute, Vladikavkaz Scientific Center RAS, Vladikavkaz,
Russia

We consider a self-adjoint fourth-order operator H acting in the Hilbert space
L?(0,1) and given by

Hy=yY + (py) +qy. ¥'(0) =y"(0)+p0)y'(0) =y(1) =y"(1) =0,

where the coefficients p and ¢ are real 1-periodic functions, p, ¢ € L*(T), T = R/Z.
The domain of this operator is the space
Dom(H) = {y € L*(0,1) : ¢/',y",y"" +py' € L'(0,1), 4™ + (py') + qy € L*(0, 1),
y'(0) =y"(0) + p(0)y'(0) = y(1) = y"(1) = 0}.
Kitavtsev, Recke, and Wagner [1] proved that the thin film equation is reduced to

the spectral problem for the operator H. The main goal of our talk is to determine
high energy eigenvalue asymptotics for H. Introduce the Fourier coefficients

fo= | e fus / ) cos(zn + 1)

We formulate our main result.

Theorem 1. Let p, ¢ € L*(T) and let n € N be large enough. Then the eigenvalues
Wn are real and have algebraic multiplicity one. Moreover,

pin = (5 70)" + (5 +70) " (en = p0) + O),

as n — +oo. If, in addition, ", ¢ € L*(T), then

5 — lIpll?

] +q0 +a\0n +O(n72)7

o= (5 1)+ (5 1) (Pen —p0) +

as n — 4o0.

These results are an essential step to obtain the trace formula for the operator H
and the first step in solving the inverse spectral problem for this operator.

This work was supported by grant MK-160.2022.1.1 of the President of Russian
Federation for young candidates of sciences.
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Optimal control problems for linear fractional-order
equations under different definitions of fractional
integro-differential operators

S.S. Postnov
Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russia

We consider linear fractional-order equations of the following type:

0D7q(t) = a(t)q(t) + b(t)u(t), (1)

where q(t) is the system state, q(t) € H'(0,T], oD is the left-sided fractional deriva-
tive operator, ¢t € (0,T], a(t) and b(t) are some given functions. Admissible controls
are assumed to be p-integrable functions, u(t) € L,(0,7], p > 1. We will discuss
several cases depending whether the fractional derivative is understood in the sense
of Caputo—Fabrizio, Atangana—Baleanu, Erdélyi-Kober or Katugampola. In the last
two cases, index o is composite and consists of several indices. In the first two cases,
we consider o € (0, 1].

Let us formulate two optimal control problems (OCP A and B) for system (1).
Find a control function u(t), ¢ € [0, T], such that system (1) passes from a given initial
state to the assigned final state and herewith: 1) the norm of a control function is
minimal with the assigned control time 7' (OCP A), 2) the control time T is minimal
provided ||@|| <1, 1 > 0, where [ is the assigned constant (OCP B).

The OCP stated above can be reduced to the classical I-problem of moments [1].

Theorem 1. Let system (1) be given with fractional derivative operator meant in the
sense of Caputo—Fabrizio or Atangana—Baleanu. Then the l-problem of moments for
system (1) is well-posed

1. at any o € (0,1] in the case of Caputo—Fabrizio;
2. for o > 1/p in the case of Atangana—Baleanu.

Analogous results were obtained for Erdélyi-Kober operators recently [2].

We construct some explicit solutions of the [-problem of moments and analyze the
control function norm behaviour dependng on the derivative index for different kinds
of the fractional-order derivative. Also, we analyze boundary and optimal trajectories
of these systems.
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About integral invariants of multidimensional
differential systems

A.F. Pranevich
Yanka Kupala State University of Grodno, Grodno, Belarus

The theory of integral invariants (both relative and absolute) was introduced by
H. Poincaré in his pioneering work [1] and later was extended by E. Cartan [2]. At
the same time, important specific examples of integral invariants were known earlier
(see, e.g., the theorems of W. Thomson and H. L. F. Helmholtz from hydrodynamics
on the conservation of circulation and vortex flow [3, pp. 105-111]. The current state
of the theory of integral invariants is given by academician V. V. Kozlov in [4].

In this talk, we present the theory of integral invariants of the first and the total
orders for the system of exact differential equations (or the Pfaff system)

dr, = X,(tx)dt;, i=1,....n, X;€CD), D=TxXCR"™ (1)

j=1
The following result is proved in [5].

Theorem 1. System (1) admits the first order absolute integral invariant
I= /ZJi(t,x)&ci, J,eCY(D), D'cD,i=1,...,n,
7 =1

if and only if the following identities hold

X it @)+ Lt 2)0, Xyy(te) =0 ¥(ta)e D', j=1,...,m, i=1,...n,
k=1

where L is an arbitrary smooth curve in the domain X' C X C R™, and X; are the

linear differential operators X;(t,x) = 0, + > X;;(t,z)0, V(t,z) € D, j=1,...,m.
i :

All obtained results were concretized for the multidimensional Hamiltonian sys-
tems

j=1 j=1
where the Hamiltonians H; belong to C?(G), j = 1,...,m, and G is a domain in
Rm,+2n'
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Semigroup approach to studying Volterra
integro-differential equations arising
in viscoelasticity theory

N. A. Rautian

Lomonosov Moscow State University, Moscow, Russia

Abstract Volterra integro-differential equations with integral operator kernels rep-
resentable by Stieltjes integrals are studied. These integro-differential equations can
be realized as partial integro-differential equations arising in the theory of viscoelas-
ticity and the theory of heat propagation in media with memory and have many of
other important applications.The approach is based on the study of one-parameter
semigroups for linear evolution equations. Results on the existence of a strongly con-
tinuous contraction semigroup generated by a Volterra integro-differential equation
with operator coefficients in a Hilbert space are stated. The statement of the corre-
sponding Cauchy problem for a first-order differential equation is given, and a theorem
on the well-posedness of this problem is stated. The properties of the generator of the
semigroup and the properties of the operator function associated with it (the symbol
of the original integro-differential equation) are studied (see [1,2]).

This work was supported by the Russian Foundation for Basic Research (project
No. 20-01-00288).
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Bound rates for convergence of FEM in the
problem of wavefront reconstruction from its slope
measurements with fractional order stabilizer

A.V. Razgulin

Lomonosov Moscow State University, Moscow, Russia

The problem of wavefront reconstruction from its slopes arises in adaptive optics
and is associated with determining the phase of a light wave based on the data of
the Shack-Hartmann sensor [1]. In [2,3], a family of new wavefront reconstruction
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methods was proposed, which are based on the variational approach in combination
with the finite-element method (FEM) and bilinear splines. In [3], to improve the
spatial-frequency characteristic of the method, a stabilizer with the second order
difference derivatives was used with a fractional power, the parameters of which were
also chosen based on the variational approach.

The report discusses the accuracy bounds of the considered method. Under the
condition that the grid step is consistent with the parameters of the fractional order
stabilizer, bounds are obtained for the accuracy of FEM under natural requirements
for the smoothness of the wavefront from anisotropic Sobolev spaces with integer
smoothness indices. Based on the choice of special anisotropic spaces with fractional
smoothness orders and the use of corresponding interpolation methods for the FEM
error operator, scales of bounds for the accuracy of the method are obtained that are
consistent with the fractional smoothness of slopes.

This work was supported by the Ministry of Education and Science of the Russian
Federation within the framework of the program of the Moscow Center for Funda-
mental and Applied Mathematics under agreement No. 075-15-2019-1621 and RFBR,
(project No. 18-29-02103).
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Functional differential equations with dilation
and symmetry

L. E. Rossovskii
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

A.A. Tovsultanov
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

Basics of the theory of boundary-value problems for elliptic functional differential
equations were laid down by A.L. Skubachevskii [1], where an extensive overview
of the literature and applications to problems of physics, mechanics, and control
theory can be found. Elliptic functional differential equations with compression and
dilation of independent variables were considered in [2,3]. They have a notable one-
dimensional prototype, the pantograph equationy = ay(At)+by(t), emerging in various
fields such as astrophysics, engineering, and biology.
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The talk is devoted to the Dirichlet problem in a plane bounded domain for a
strongly elliptic second-order functional differential equation containing arguments’
transformations of the form x + z/p (p > 0) and x — —z in the highest derivatives.
The study of the solvability of the problem is based on the Garding-type inequality for
which necessary and sufficient conditions are obtained in algebraic form. We combine
the Gelfand theory of commutative Banach algebras with the methods for strongly
elliptic systems of differential equations.

This work is supported by the Ministry of Science and Higher Education of the
Russian Federation within the project “Nonlinear singular integro-differential equa-
tions and boundary-value problems” (FEGS-2020-0001).
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Justification of models of plates containing hard
thin inclusions inside

E. M. Rudoy
Lavrentyev Institute of Hydrodynamics of SB RAS, Novosibirsk, Russia

The equilibrium problem for the Kirchhoff-Love plate containing a nonhomo-
geneous inclusion is considered. It is assumed that the elastic properties of the in-
clusion depend on a small parameter characterizing width of the inclusion & as eV
with N < 1. The problem is formulated as a variational one, namely, as the problrm
of minimization of the energy functional over the set of all admissible deflections in
the Sobolev space H2. This implies that the deflection function is a solution of the
boundary value problem for the biharmonic operator (pure bending, see, e.g., [1,2]).

The aim of the present work is to justify the passage to the limit as ¢ — 0. To
do this, we apply a method that was originally introduced in [3,4] for problems of
gluing plates. The method is based on variational properties of the solution to the
corresponding minimization problem and allows us to find limit problems for all N < 1
simultaneously. It is shown that there exist two types of hard inclusions depending
on N: thin rigid inclusion (N < —1) and thin elastic inclusion (N = —1). In the
case N € (—1,1), the influence of the inhomogeneity disappears in the limit. We get
limit problems in a variational form, which is convenient, for example, for numerical
analysis by the finite element method.
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Estimates of total bandwidth for Schrodinger
operators on periodic graphs

N. Yu. Saburova
Northern (Arctic) Federal University, Arkhangelsk, Russia

We consider Schrédinger operators with periodic potentials on periodic discrete
graphs. Their spectrum consists of a finite number of bands. We obtain two-sided
estimates of the total bandwidth for the Schrodinger operators in terms of geometric
parameters of the graph and the potentials. In particular, we show that these esti-
mates are sharp. It means that these estimates become identities for specific graphs
and potentials. The proof is based on the Floquet theory and trace formulas for fiber
operators. The traces are expressed as finite Fourier series of the quasimomentum
with coefficients depending on the potentials and cycles of the quotient graph from
some specific cycle sets. In order to obtain our results we estimate these Fourier coef-
ficients in terms of geometric parameters of the graph and the potentials. The talk is
based on joint work with Evgeny Korotyaev from St. Petersburg State University [1].
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Nonlinear Schrodinger equation with delay
and its regularization

V. Zh. Sakbaev
Keldysh Institute of Applied Mathematics, Moscow, Russia

A. D. Shiryaeva

Gromov Flight Research Institute, Zhukovskii, Russia

The report is devoted to the properties of the initial-boundary value problem for
a nonlinear Schodinger equation containing terms with time delay. The conditions
for the existence of a global solution are obtained, as well as the conditions for the
gradient blow up phenomenon. The relation between the gradient blow up with
self-focusing and the destruction of pure quantum state is described (see [1]). The
procedure of continuation of the solution through the blow up by the curve in the set
of general quantum states is defined similar to [2].
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Eta-invariants for G-operators

A.Yu. Savin
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

K.N. Zhuikov
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

Eta-invariants of invertible parameter-dependent pseudodifferential operators were
introduced by Melrose. These invariants are a regularization of the classical winding
number. They are also a generalization of the Atiyah—Patodi-Singer eta-invariant of
elliptic self-adjoint operators.

We extend the definition of eta-invariants to a wide class of nonlocal operators. Let
us describe our class of nonlocal parameter-dependent operators. First, let a discrete
group G act isometrically on a manifold X and consider the induced representation
of G on functions on X by shift operators (T,u)(z) = u(g~'x). Second, we allow
our operators with parameter to have periodic coefficients. Thus, we consider the
following class of G-operators with parameter:

D(p)= > Dgilx,—i0/0z,p)Tye™ : C*(X) — C=(X), (1)
(9,k)EGXZ

where Dgy(x, —i0/0z,p) is a pseudodifferential operator with parameter p (e.g.,
see [1]). Families of the form (1) arise when studying elliptic theory for G-operators
on manifolds with cylindrical ends and on manifolds with isolated singularities. The
notion of ellipticity for such families is known. As in the classical case, ellipticity
implies the Fredholm property for all p € R and invertibility for large p.

Given an invertible elliptic family (1), we define the eta-invariant for it, obtain
its main properties (including the logarithmic property). In particular, we obtain
a formula for the variation of the eta-invariant. The variation is expressed as a sum
of contributions of the components of the complete symbol of the operator integrated
over the cotangent bundles of the fixed point sets of the group action. The latter
formula is similar to the formula for the Wodzicki residue in the case of operators
without parameter. Our results in the special case of trivial G were published in [2].

This work is supported by the Ministry of Science and Higher Education of the
Russian Federation, agreement No. 075-03-2020-223/3 (FSSF-2020-0018).
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On the nonlocal integral boundary value problem
for fractional differential equations

D. Seba
Dynamic of Engines and Vibroacoustic Laboratory, University M'hamed Bougara of
Boumerdes, Algeria

Fractional calculus has been used to mathematically model many complicated
natural biological, physical, or industrial systems. The theory of integration and dif-
ferentiation of arbitrary real or complex order has attracted the attention of many
mathematicians and applied scientists in various fields of science and technology since
the fact that hereditary properties and memory effects of numerous real-world pro-
cesses could be explained by integrals and derivatives of non-integer or fractional
order. For more details on fractional differential equations and their applications, we
refer the reader to [2,4-7] and references contained therein.

Boundary value problems with integral boundary conditions constitute a very in-
teresting and important class of problems. They include two, three, multipoint, and
nonlocal boundary value problems as special cases. Integral boundary conditions are
often encountered in various applications; it is worthwhile mentioning the applications
of those conditions in the study of population dynamics and cellular systems. More-
over, boundary value problems with integral boundary conditions have been studied
by a number of authors, see for instance [1,3,8] and the references therein.

In this work, we are concerned with the existence of solutions to the nonlocal
integral boundary value problem for fractional differential equations of Caputo type.
In our investigation we rely on the fixed point theory and the properties of fractional
derivative and integral.
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Short-wave asymptotics for evolutionary equations
with abruptly varying coefficients
A. 1. Shafarevich

Lomonosov Moscow State University, Moscow, Russia

We study the Cauchy problems for hyperbolic equations with coefficients depend-
ing singularly on a small parameter (weak limits of the coefficients are either discon-
tinuous functions or delta-type distributions). We study short-wave asymptotics in
these problems, the main attention being paid to the behavior of geometric objects
(Lagrangian surfaces of complex vector bundles) associated with such solutions. In
particular, we describe rearrangements of these geometric objects near the supports
of singularities of the coefficients.
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Minimizers of a variational problem for nematic
liquid crystals with variable degree of orientation
in two dimensions

I. Shafrir

Technion — |.1.T., Haifa, Israel

D. Golovaty
University of Akron, Akron, USA

We study the asymptotic behavior as k — oo of the minimizers of the energy
Gulw) = [ (k= DIVl + [Vul?)
Q

over the class of maps u € H'(Q, R?) satisfying the boundary condition u = g on 912,
where € is a smooth, bounded and simply connected domain in R? and g : 9Q — S*.
The motivation comes from a simplified version of the Ericksen model for nematic
liquid crystals. We will present similarities and differences with respect to the analog
problem for the Ginzburg-Landau energy.
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Generalized solution of the Hamilton—Jacobi
equation with a three-component hamiltonian
exponentially dependent on the momentum
L. G. Shagalova

N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of RAS,
Yekaterinburg, Russia

The following Cauchy problem for the Hamilton—Jacobi equation of evolutionary
type is considered:

ou ou
E—FH(J:,%):O, te(0,T), zeR, (1)
u(0,2) = up(x), xR (2)

Here T > 0 is a fixed time point and wg(-) is a given continuously differentiable
function. Continuously differentiable functions h(-) : R — R and f(-) : R — R and
9(-) : R = R are also given. The functions f and g are assumed to be monotonically
increasing and monotonically decreasing, respectively. Let there exist points =, and
x* such that f(xz.) =0, g(z*) = 0, and the inequality x, < x* is valid.

Problem (1), (2) is considered under the assumption that the Hamiltonian has the
form

g(x)e P, T < Ty, pER,
H(z,p) = h(z)+ f(z)eP +g(x)e™?, z. <z <z”,peR, (3)
f(x)eP, z>z*, peR.

A continuous generalized solution of problem (1)-(3) is determined on the base
of the viscosity/minimax approach [1,2]. To construct this solution, we apply the
method of generalized characteristics [3] and solve variational problems. Sufficient
conditions for the uniqueness of the generalized solution are indicated.

References

[1] Crandall M. G., Lions P.-L. Viscosity solutions of Hamilton—Jacobi equations,
Trans. American Math. Soc., 377, 1-42 (1983).

[2] Subbotin A.I. Generalized Solutions of First Order PDEs: The Dynamical Opti-
mization Perspective. — Boston: Birkh&user, 1995.

[3] Subbotina N.N. The method of characteristics for Hamilton—Jacobi equation and
its applications in dynamical optimization, Modern Math. Appl., 20, 2955-3091
(2004).

108



Tensor invariants of dynamical systems with a finite
number of degrees of freedom with dissipation

M. V. Shamolin

Lomonosov Moscow State University, Moscow, Russia

It is well known [1-3] that a system of differential equations is fully integrable if
it has a sufficient number of not only first integrals (scalar invariants) but also tensor
invariants. For example, the order of the considered system can be reduced if there is
an invariant form of the phase volume. For conservative systems, this fact is natural.
However, for systems with attracting or repelling limit sets, not only some of the first
integrals, but also the coefficients of the invariant differential forms involved have
to consist of, generally speaking, transcendental (in the sense of complex analysis)
functions [4-6].

For example, the problem of an n-dimensional pendulum on a generalized spherical
hinge placed in a nonconservative force field leads to a system on the tangent bundle
of the (n — 1)-dimensional sphere with a special metric on it induced by an additional
symmetry group. Dynamical systems describing the motion of such a pendulum have
the various dissipation, and the complete list of first integrals consists of transcen-
dental functions expressed in terms of a finite combination of elementary functions.
There are also problems concerning the motion of a point over n-dimensional rotation
surfaces, the Lobachevsky spaces, etc. The results obtained are especially important
in the context of a nonconservative force field present in the system.

In this activity, we present tensor invariants for homogeneous dynamical systems
on tangent bundles of smooth finite-dimensional manifolds. The relation between
the existence of these invariants and the existence of a complete set of first integrals
necessary for the integration of geodesic, potential, and dissipative systems is shown.
The force fields introduced into the considered systems make them dissipative with
dissipation of different signs and generalize previously considered force fields.
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Boundary optimal control and homogenization:
critical case

T. A. Shaposhnikova

Lomonosov Moscow State University, Moscow, Russia

We consider the homogenization of an optimal control problem in which the control
v is placed on the part Iy of the boundary, and the spatial domain contains a thin
layer of “small particles” very close to the controlled part of boundary with the
Robin boundary condition posed on the boundary of those “small particles.” We
assume that the size of the particles and parameters involved in the Robin boundary
condition are critical (and so they justify the occurrence of some “strange terms” in
the homogenized problem and in the limit of the cost functional).

Large and very singular solutions to semilinear
elliptic equations

A. E. Shishkov
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

Let @ C R", n > 1, be a bounded domain and f(-,-) a nonnegative continuous
function in Q x R! such that f(z,0) = 0 Vo € Q. We consider the so-called large
solutions of the equation

—Au+ f(z,u) =01in Q, (1)
i.e. solutions u(z) of (1) satisfying the boundary condition
lim wu(z) =00, d(z):= dist(z,0N). (2)
d(z)—0

If f = f(u) is a monotone function, then the existence of the large solution is con-
nected with the well-known Keller-Osserman condition on the growth of f(u) as
u — oo and with the suitable generalized K—O conditions for different classes of
general nonnegative nonmonotonic nonlinearities f(z,«) (S. Dumont, L. Dupaigne,
0. Goubet, V. Radulescu (2007), J. Lopez-Gomez (2000), and others). More difficult
is the problem of uniqueness of the large solution. In the case of smooth domain 2 and
flu)=uP, p= Z—f%, n > 2, the uniqueness was firstly proved by C. Loewner, L. Niren-
berg (1974). For f(u) = u”, p > 1, the mentioned uniqueness was proved by C. Bandle
and M. Marcus (1992). As to f(x,u), M. Marcus and L. Veron (2003) proved the
uniqueness of the large solution for C2-smooth bounded Q if f(x,u) > cod(z)*uP
Ve € Q,Vu>0,p>1 a>0, c = const > 0. Finally, the uniqueness was hy-
pothesized in [1] for the case where f(x,u) > coexp (—ard(z) ) uP Vo € Q, Vu >0
2 >1,0< a< lye; > 0. We have proved the validity of this hypothesis. More-
over, we proved the uniqueness of the large solution even for a weaker condition on
the degeneration of f(x,u) on the boundary of Q: f(z,u) > cohy (d(z))uP Vz € Q,
p > 1, where hy,(s) = exp (—s~'w(s)), and a nondecreasing continuous function w(-)
satisfies the Dini condition

/ s tw(s)ds < oo Ve > 0. (3)
0
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Question: is condition (3) also necessary for the uniqueness of the large solution?

As was shown in [3], condition (3) is sufficient for the existence of the so-called
very singular solution u,(x) of equation (1), where a € 012, i.e. a solution of (1)
satisfying the boundary condition ug(z) = 0 Va € 09\ {a} with a singularity at the
point a stronger than the singularity of the corresponding Poisson kernel. It is proved
in [2] that condition (3) is also necessary for the existence of the very singular solution
uq () of (1) with a € 02, which may be considered as some argument for the positive
answer to the above question.

The research is supported by RUDN University, Strategic Academic Leadership
Program.
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Half-range problem in operator theory
A. A. Shkalikov

Lomonosov Moscow State University, Moscow, Russia

Let H be a Hilbert space with scalar product (-,-) endowed also with an indefi-
nite inner product [z,y] = (Jz,y). Here J is the involution operator (fundamental
symmetry):

J=J"=P, -P_, J*=1,

where Py are orthoprojections.

The space (H,[-,-]) = K is called Krein space (or Pontrjagin space IL,,, provided
that s = min{s;, »_} < oo, where sy = rankPy).

A subspace £ in H is said to be nonnegative if [z, z] > 0 for all z € £, and mazimal
nonnegative if there are no proper nonnegative extensions of L.

A linear operator A is said to be self-adjoint (m-dissipative) in IC if JA is self-
adjoint (m-dissipative) in H.

Problems (open even for bounded operators):

1. Does a self-adjoint or m-dissipative operator A in KC possess a mazimal nonneg-
ative A-invariant subspace?

2. If yes, is there one among these subspaces such that the spectrum of the restric-
tion AT = Al onto this subspace lies in the closed half-plane C~ ?

3. If yes, does the operator A" generate a Cy or holomorphic semigroup?

These problems are closely connected with the following ones having important
applications in actual problems of mathematical physics.
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1. Let L(\) = A2A + AB + C, where C is a self-adjoint (generally unbounded)
operator, while symmetric operators A and B are such that D(A4) D C, D(B) D
C. To find conditions for the factorization

LN =\=2)A\N-2), Zy=—(AZ+ B)A™,

where the spectrum of Z lies in the closed lower half-plane C~. What additional
spectral properties of the operator Z can be discovered?
A B - . "
2. Let L = B C be a self-adjoint operator in H = H1®Hs. To find conditions
under which £ is similar to a diagonal operator in H.

In the talk, we present old and new results concerning these problems.

Finite-time generalized synchronization
between chaotic systems

V. K. Shukla
Shiv Harsh Kisan P.G. College, Basti, India

We discuss finite-time generalized synchronization between different chaotic sys-
tems. Further, chaotic and hyper-chaotic systems are synchronized up to a desired
transformation matrix. Simulation for chaotic and hyper-chaotic systems has been
performed. Numerical results are presented graphically.
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A matrix approach for nonlinear weakly singular
integro-partial differential equations
S. Singh

Indian Institute of Technology (Banaras Hindu University), Varanasi, India

V. K. Singh

Indian Institute of Technology (Banaras Hindu University), Varanasi, India

An efficient matrix approach for the solution of nonlinear weakly singular integro-
partial differential equations (integro-PDEs) with a given initial condition is proposed.
The method is bases on the operational matrices of the Legendre wavelets. By im-
plementing the operational matrices of the Legendre wavelets, we reduce the original
intero-PDE to a system of nonlinear equations. Some useful results concerning the
convergence and error estimates associated to the suggested scheme are presented.
Mustrative examples are provided to show the effectiveness and accuracy of the pro-
posed numerical method.
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On solvability of parabolic differential-difference
equations

O.V. Solonukha
Federal Research Center “Informatics and Control”, Russian Academy of Science;
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

We consider the differential-difference equation with shifts of space variables

Opu(t,x)— Y 9;Ai(t,x, Ru, VRu)+Ag(t,z, Ru, VRu) = f(t,z) ((z,t) € Qr) (1)

1<i<n
in the cylinder Qp = (0,T") x @, supplemented by the initial condition
u(0,7) =p(z)  (ze€q) (2)
and the boundary condition
u(t,z) =0 0<t<T, zeR"\Q). (3)
Here @ C R™ is a bounded domain with boundary 0Q € C'*,

Ru(t,z) = Z apu(t,z + h),
heM
where ap, € R, and the set M C R"™ consists of a finite number of vectors h € R™ with

integer coordinates.
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Let ¢ € Ly(Q), f € We(0,T; W, 1Q), p € (1,00), and 1/p+ 1/q = 1. Denote
W = {u € L,(0,T; W[}(Q)) DO € Ly(0,T; W, 1(Q))}. Thus, we consider the
generalized solvability of parabolic equation (1) with a differential-difference operator
Ap. Sufficient conditions for the operator Ar to be pseudomonotone on W or to have
(X, W)-semibounded variations are obtained. We also consider conditions for Ar to
be coercive or partially coercive. These conditions guarantee that problem (1)—(3)
has at least one generalized solution v € W.

Note that more restrictive conditions were considered in [3]. Here we use some
results and some proofs from [1,2] to obtain weaker conditions.

This work was supported by the Ministry of Education and Science of the Russian Fed-
eration within the state assignment no. 075-03-2020-223/3 (FSSF-2020-0018).
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A new numerical approximation of Caputo
fractional derivative and its applications

N. Srivastava
Indian Institute of Technology (Banaras Hindu University), Varanasi, India

V. K. Singh

Indian Institute of Technology (Banaras Hindu University), Varanasi, India

In this talk, we discuss numerical approximation of the Caputo fractional deriva-
tive of order « € (1,2). We have used the cubic interpolating polynomial to develop
this approximation. The approximation is second order accurate and proved to be
very helpful to find the numerical solution of time-fractional diffusion wave problem.
The difference scheme is second order in time and space for all a. In order to prove
the effectiveness and accuracy of the scheme, a comparative study is given with the
earlier existing results.
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Asymptotics of eigenvalues of large
Toeplitz matrices

V. A. Stukopin
Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Our goal is to find uniform asymptotic formulas for all of the eigenvalues of banded
symmetric Toeplitz matrices of large dimension with degenerate symbol. The entries
of the matrices are real, and we consider the case where the real-valued generating
function is such that its first five derivatives at one endpoint of the interval equal zero.
This is not the simple-loop case considered earlier. We obtain nonlinear equations
for the eigenvalues. It should be noted that our equations have a more complicated
structure than the equations for the simple-loop case.

Let a(t) be a Lebesgue integrable function defined on the unit circle T = {t €
C : |t| = 1}. We denote by T, (a) the Toeplitz matrix T),(a) := (aj—k)?,iip where
n € N is a natural number, and a; denotes the [-th coefficient of the Fourier series of
the function a. Note that the Toeplitz matrix can be viewed as an operator from a
finite dimensional vector space. The function a(t) is called the symbol of the Toeplitz
matrix (Toeplitz operator) T, (a). A model example considered in detail this report is
devoted to finding asymptotic formulas for the eigenvalues of the Toeplitz matrix with
the symbol a(t) = (t — 2 + })®. Introduce the function g(¢) = a(e’?) = — (2sin %)6
defined on [0, 27].

Let us formulate main results. We introduce some functions defined on the interval

€ (0,7). Put

) (1)

(the arccos function is multivalued, so S(¢) is one of its regular branches),

B(p) := arccos (1 — (1 — cosp)e

RSN, 2)

Theorem 1. Let A = g(v). Then the equation det T, (a — g(v)) = 0 is equivalent to
the following equations:

an<”;3 ) f(oum) 3)
and
n-+3 _ 1
o ("520) = i 2
where
o n)zzB(@)Sln((ﬂ+3) c(¢)) + C(p) sinh ((n 4 3)b(¢))
’ sin () (cos ((n + 3)e(p)) + cosh ((n + 3)b(p)))
h(p.n) = o Blp)sin ((n +3)c(p)) — C(p) sinh ((n +3)b(p))
’ *Sin () (= cos ((n + 3)c(p)) + cosh ((n + 3)b(¢)))’
¢ € (0,m)
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Theorem 2. If n is sufficiently large, then

1. Equation (3) has exactly one root pa;_1 in each of the intervals (M m),

n+3 > n+43
where j € {1,...,[%L]}. Moreover, we can write the following estimate:
01— | < o 08) o)
<102j*1 <102J_1 ~ n+3 . )

where k is the iteration number.

2. Equation (4) has exactly one root pa; in each of the intervals (321 M),

n+3’ n+3
where j € {1,...,[5]}. Moreover,we can write the following estimate:
)~ o] < 2T (0.8)" ©)
P2 TPUS g

where k is the iteration number.

This work is supported by RSCF-21-11-00283.
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Bifurcations in near-Hamiltonian systems with
damped oscillatory perturbations

O. A. Sultanov
St. Petersburg State University, Saint Petersburg, Russia

Consider the system of two differential equations

(cil_f =0yH(z,y) + F(z,y,5(t),1), Cji_zz = —0,H(z,y) + G(z,y,S(t), 1),

where H(z,y), F(z,y,S5,t), and G(z,y, S,t) are smooth functions defined for all z =
(r,y) € R%, S € R, t > 0, 27-periodic with respect to S. It is assumed that H(xz,y) =
1z|?/2+0O(|z]3) asz — 0, F(x,y,S,t) — 0 and G(z,y, S,t) — 0 ast — oo for any fixed
values of (z,y,S), and S’(t) — const as ¢t — co. The effect of damped perturbations
F(x,y,S(t),t) and G(x,y,S(t),t) on a global behaviour of solutions in the vicinity
of the equilibrium of the limiting system is investigated. In particular, possible long-
term asymptotic regimes for solutions are described. It is shown that depending on
the parameters and structure of perturbations there can be a phase-locking mode
with a phase difference tending to a constant at infinity, and a phase-drifting mode
with an unboundedly growing phase difference. In both regimes, the equilibrium can
remain stable, become asymptotically stable or unstable in the perturbed system. In
the case of loss of stability, the trajectories of the perturbed system, starting near the
equilibrium, can have an unboundedly growing amplitude at infinity.
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Homogenization of nonstationary
Schrodinger-type equations

T.A. Suslina
St. Petersburg State University, St. Petersburg, Russia

Let I' C R9 be a lattice and let Q be the cell of I'. Next, [ is the dual lattice,
and € is the central Brillouin zone of the dual lattice. For I'-periodic functions, we
put f¢(x) := f(x/¢), ¢ > 0. In Ly(R%;C"), we consider a selfadjoint matrix strongly
elliptic second-order differential operator A. given by A. = b(D)*¢%(x)b(D). Here
g(x) is a bounded and positive definite I-periodic (m x m)-matrix-valued function.
Next, b(D) = 2?21 b;D;, where b; are constant (m x n)-matrices. It is assumed that
m > n and the symbol b(¢) = S27_, b;¢; has rank n for 0 # £ € RY.

Introduce the effective operator A° = b(D)*gb(D), where ¢° is the so-called effec-
tive matrix. Recall the definition of ¢. Suppose that a matrix-valued function A(x)
is a [-periodic solution of the problem b(D)* g(x)(b(D)A( )+ 1) =0, [, A(x)dx =0.
Denote §(x) := g(x)(b(D)A(x) + 1). Then g% = [, g(x)

We study the behavior of the operator exponentlal e‘“‘ 7 for small € and 7 € R.

According to [1], as € — 0, e~*4<7 converges to e~A°T in the norm of operators acting
from the Sobolev space H3(R%; C") to Ly(R%;C"). The following estimate holds:

He 1ALT _e 1A°T

||H3(Rd)4)L2(Rd) < C(l + |T|)E' (1)

Our goal is to refine this estimate by taking correctors into account. We managed
to approximate not e~ %<7, but the operator e *4<7(I + eAb(D)II.). Here II. is the
pseudodifferential operator whose symbol is the characteristic function of the set Q/e.

Theorem 1. We have
C(L+7)%*, (2)
<O +]r)e. (3)

le™ 47 (1 + eATB(D)IL) — e — eK (e, 7)]| o any 1y uety <

le™" 47 (1 + eABDIILL) — ™47 — K (&, )|y s

The correctors Ky(e,7) and K(e,7) are given by

Ki(e,7) = ATL.b(D)e "7, K(e,7) = Ky(e,7) — i /O ’ e~ =) Ar(D)e 4 P dp.

Here M (D) :=b(D)*L(D)b(D) and L(D) is the differential operator with the symbol
L(g) =™ /Q (A(x)*(£)"9(x) + g(x)"b(§)A(x)) dx.
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Estimates (1)—(3) are order sharp. In the general case, they are sharp with respect
to the type of the operator norm and with respect to dependence on 7. However, under
some additional assumptions these results are improved.

The results are applied to investigation of the solutions to the Cauchy problem
for the equation i0;u.(x,7) = (Acu.)(x,7) with the initial data from a special class.
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Singlarities of solutions to soliton equations
represented by L, A, B-triples and the zero level
discrete spectra of L-operators

[. A. Taimanov
Sobolev Institute of Mathematics, Novosibirsk, Russia

We discuss the formation of singularities of solutions to 2 + 1-dimensional soli-
ton equations. We consider the situation where such a formation appears at the
moment when the multiplicity of the zero level discrete spectrum descreases. Such
examples were constructed for the Novikov—Veselov, modified Novikov—Veselov and
Davey—Stewartson II equations. We consider in detail the Davey-Stewartson II equa-
tion. In order to construct explicit examples of such formations, we use the Moutard
transformation for solutions of this equation. This transformation is geometrically
interpreted by means of the spinor (Weierstrass) representation of surfaces in the
four-dimensional Fuclidean space. Using the Moutard transformation and minimal
surfaces, we construct examples of solutions that have smooth rapidly decreasing
initial data and lose their regularity in a finite time [1].
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Integral characteristic equation method to solve
a nonlinear eigenvalue problem

S.V. Tikhov

Penza State University, Penza, Russia

D.V. Valovik

Penza State University, Penza, Russia

Let I = [0, h], where h > 0, let R = (=00, +00) and Ry = (0,400) and let A € R
and o € R, be parameters. In addition, let a(z) € C'(I) be a given nonnegative
function that is not identically zero and satisfies the condition a’(z) > 0.

Problem P consists in finding eigenvalues A = X such that there exist solutions
u = u(z; \;a) € C?(I) of the equation

v = —(a(z) — Nu — au?, (1)
satisfying the boundary conditions

u‘m:O =0, u/‘m:o :A#Oa

u|w:h = 07

where (z,\,a) €I x R x R, and A > 0 is a real constant.

Problem P describes electromagnetic TE-wave propagation in a plane shielded
waveguide filled with inhomogeneous nonlinear medium. From physical point of view,
eigenvalues \ are propagation constants of the waveguide.

If we set @ = 0 in (1), then problem P degenerates into the classical linear Sturm—
Liouville problem which has only a finite number of positive and an infinite number
of negative solutions [1].

In the present paper, a novel approach called integral characteristic equation
method is developed and applied to solve problem P. In particular, we prove the
following result [2].

Theorem 1. For any a > 0 problem P has infinitely many nonperturbative positive
etgenvalues \; with accumulation point at infinity.

Theorem 1 shows that the perturbation approach based on the use of the linearized
problem does not allow one to study problem P even if a > 0 is small.

This work was supported by the Russian Science Foundation (grant No. 18-71-
10015).
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Solution of the two-dimensional massless Dirac
equation with linear potential
and localized right-hand side

A. A. Tolchennikov

Institute for problems in mechanics RAS, Moscow, Russia

We consider the two-dimensional massless Dirac equation

0
o+ (i) + onl=itny) = (55

where z° = (—a,0), a > 0, ¥°(z) is a smooth fast-decaying function, h < 1, o, are
the Pauli matrices. The solution must satisfy the absorption limit principle. The talk
will be devoted to the construction of an asymptotic solution as A — 0. Using the
method of [1], we can construct an asymptotic solution outside a neighborhood of the
singular line 25 = 0. Earlier in paper [2], the asymptotics of the fundamental solution
for the singular ray xo = 0,27 > 0 was obtained.

This is a joint work with S. Yu. Dobrokhotov and 1. A. Bogaevsky. Supported by
Russian Science Foundation under grant No. 16-11-10282.
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Blow-up and global solvability of the Cauchy
problem for the equation of nonlinear long
longitudinal waves in a viscoelastic rod
Kh. G. Umarov

Academy of Sciences of the Chechen Republic, Chechen State Pedagogical University,
Grozny, Russia

Consider the nonlinear differential equation

0*u 93y

Pu 9%0 (u) n
az2012 | “or20t

2
o2~ ox2 +5

of the Sobolev type, modeling longitudinal waves in an infinite viscoelastic rod and
taking into account dispersion and dissipation. Here u = dw/9dz is the longitudinal
deformation (w is the longitudinal displacement of the points of the rod along its
axis coinciding with the = axis, the term with the coefficient 32 represents the main
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manifestation of dispersion, while the term with the coefficient o describes dissipa-
tion), «, 8 are positive parameters, and o (u) is the total stress of the rod over the
cross section. The solvability of the Cauchy problem for this equation in the space of
continuous functions on the entire real axis is studied.

An explicit form of the solution of the corresponding linear equation is found.

The time period for the existence and uniqueness of a classical solution of the
Cauchy problem for a nonlinear equation is established, and an estimate for the norm
of this local solution is obtained.

Conditions for the existence of a global solution and the blow-up of a solution on
a finite interval are considered.

On some questions in the theory of elliptic
boundary-value problems

V.B. Vasilyev

Belgorod State National Research University, Belgorod, Russia
Starting point for the study is the model pseudo-differential equation [1-3]
(Au)(z) =v(z), zeC (1)

in the cone C C R™, where A : H*(C) — H*~%(C) is a pseudo-differential operator
with the symbol A(€) satisfying the condition

cr(l+ 15D < JAG)] < eal + 6]

Such cone C has certain parameters as a rule, for example C{ = {z € R? :
x = (w1,%2),22 > alzi|,a > 0} with parameter a and C’i’b ={z R 2=
(z1,m2,3), T3 > a|r1| + |zr2|,a,b > 0} with two parameters a,b. A very natural
question arises: if we have a solution of equation (1), then what is its limit value
as the parameters tend to their endpoint values 0 or co? Some cases were discussed
in [4].

One can consider a discrete version of equation (1) using the following construc-
tions for functions of a discrete variable uq(Z),Z € hZ™,h > 0. Let Cqy = hZ™NC,h =
h=', T = [—m, 7] and A4(€) be a measurable periodic function in R™ with basic square
of periods AT™. A digital pseudo-differential operator A; with the symbol fld(f) in
the discrete cone Cy is an operator of the type

(Aqua)(@) = Y h* [ Aa(&)e’ D Caq(&)de, & € Ca,

GERZ? o

where 44(€) denotes the discrete Fourier transform of ug, see [5].
We can introduce discrete analogues of spaces H*(Cy), and for the special case
C = R, it is possible to obtain solvability conditions for the discrete analogue of
equation (1). It was shown that discrete solutions have approximation properties for
small h. The similar results were obtained for a discrete quadrant on the plane.
This work was supported by the State contract of the Russian Ministry of Educa-
tion and Science (contract No. FZWG-2020-0029).
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Stable numerical schemes for modelling
incompressible fluid flows in time-dependent
domains

Yu. Vassilevski
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow, Russia

A. Danilov
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences,
Sechenov University, Moscow, Russia

A. Lozovskiy
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow, Russia

M. Olshanskii
University of Houston, Houston, USA

We present a unified numerical approach to finite-element modelling of incom-
pressible fluid flows in time-dependent domains. The approach features relatively
large (independent of mesh size) time steps, solution of one linear system per time
step, and relatively coarse computational meshes in space. The approach is mono-
lithic and allows standard P, — P; (Taylor-Hood) finite element spaces. It is applicable
to the Navier—Stokes equations in time-dependent domains, the fluid-structure inter-
action (FSI) problems, and the fluid-porous structure interaction (FPSI) problems.
The properties of the schemes are shown on several benchmarks and hemodynamic
applications.
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[4] Lozovskiy A., Olshanskii M., Vassilevski Yu. A quasi-Lagrangian finite element
method for the Navier—Stokes equations in a time-dependent domain, Comput.
Methods Appl. Mech. Engrg., 333, 55-73 (2018).

[5] Vassilevski Yu. et al. A stable method for 4D CT-based CFD simulation in the
right ventricle of a TGA patient, Russ. J. Numer. Anal. Math. Model., 35, No. 5,
315-324 (2020).

[6] Lozovskiy A., Olshanskii M., Vassilevski Yu. A finite element scheme for the nu-
merical solution of the Navier—Stokes/Biot coupled problem, Russ. J. Numer.
Anal. Math. Model., 37, No. 3, 159-174 (2022).

Boundary singular problems for mixed quasilinear
equations

L. Véron

CNRS Institut Denis Poisson Université de Tours, France
We study the existence of solutions to the problem

—Au+uP — M|Vu|?=0 in Q (1)
U=l on 01,

in a bounded domain 2, where p > 1,1 < ¢ < 2, M > 0, p is a nonnegative Radon
measure in 0f2, and the associated problem with a boundary isolated singularity at
a € 092,
—Au+uP — M|Vul? =0 in Q @)
u=0 on 90\ {a}.
The difficulty lies in the opposition between the two nonlinear terms which are not

on the same nature. Existence of solutions to (1) is obtained under a capacitary
condition

w(K) < ¢cmin {cap@gp,, capd®, q/} for all compact sets K C 0. (3)
p’ Tq

Problem (2) depends on several critical exponents on p and g as well as the position
of ¢ with respect to %.
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Spectral analysis of Volterra integro-differential
equations and associated semigroups of operators

V.V. Vlasov

Lomonosov Moscow State University, Moscow, Russia

We consider abstract linear second-order integro-differential equations in a Hilbert
space set on the positive half-line and having unbounded operator coefficients and
integral terms of the Volterra convolution type with kernels represented by the Stieltjes
integral of a decaying exponential. The equations under study represent an abstract
form of partial integro-differential equations arising in the theory of viscoelasticity and
have many other important applications. Sufficient conditions are found under which
the initial value problem for the equation is well-posed in weighted Sobolev spaces.
Localization and structure of the spectra of operator-functions being the symbols of
these equations are established. We provide a method for reducing the initial value
problem for an equation of this class to the Cauchy problem for a linear differential
equation in an extended function space. The existence of a contractive Cy-semigroup
is proved. As a corollary, we establish the well-posedness of the resulting Cauchy
problem for the first-order differential equation in an extended function space and
the initial value problem for the original abstract integro-differential equation, and
indicate the relation between their solutions. Then we study the properties of the
generator of a semigroup associated with Volterra integro-differential equations in
Hilbert spaces. As an example, the results are applied to the case of exponential and
fractional exponential kernels (the Rabotnov functions) of integral operators (see [1,
2)).

This work was supported by the Russian Foundation for Basic Research (project
No. 20-01-00288).
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Mathematical modelling of respiratory viral
infections

V. Volpert
Institut Camille Jordan, University Lyon 1, Villeurbanne, France;
INRIA Team Dracula, INRIA Lyon La Doua, Villeurbanne, France;
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

In this lecture we will present an overview of recent works on mathematical mod-
elling of respiratory viral infections at the individual and population levels. We will
begin with the investigation of infection progression in cell cultures and in tissues
of human body. We will determine viral load and infection spreading speed and we
will apply these results to evaluate infectivity and severity of symptoms for differ-
ent variants of the SARS-CoV-2 infection. Next, using the estimates of the infection
transmission rate, we will present new immuno-epidemiological models and will use
them to evaluate the epidemiological situation for the ongoing COVID-19 pandemic.

This cycle of works is done in collaboration with L. Ait Mahiout, M. Banerjee,
N. Bessonov, S. Ghosh, B. Kazmierczak, A. Mozokhina, A. Tokarev.

The work is supported by the RUDN University Strategic Academic Leadership
Program.

Maxwell’s equations and Yang—Mills equations
in complex variables

R. Yang
University at Albany, the State University of New York, Albany, USA

This expository talk first provides a view of Maxwell’s equations from the perspec-
tive of complex differential forms and the Hodge star operator. The electric field and
the magnetic field are complex 3-dimensional in this case. We will see that holomor-
phic functions naturally give rise to nontrivial solutions to Maxwell’s equations. The
discussion extends to Yang—Mills (YM) equations, where we will take another look
at YM-Lagrangian, YM functional as well as the Belavin-Polyakov-Tyupkin-Schwartz
instanton solution.
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Smooth solutions of hyperbolic
differential-difference equations in a half-space

N.V. Zaitseva

Lomonosov Moscow State University, Moscow, Russia

In the present paper, we study the existence of smooth solutions of two hyperbolic
differential-difference equations in the half-space {(z,t)|z € R", t > 0}.

The first of these equations contains superpositions of differential operators and
shift operators with respect to each of the spatial variables,

n n
2
ug(z,t) = a E Uz o, (T, 1) + E bjtg o, (T1,. ., Tj_1, 25 — hj, Tjp1,. .., Tn, ),
i=1 =1

where a > 0, b1,...,b,, and hq,..., h, are given real numbers.
The second equation contains a sum of differential operators and shift operators
with respect to each of the spatial variables,

n

n
uge(z,t) = ¢* Zuggﬂj (x,t) — Zdju(xl, e Z1, 8 — U X, X, B),
j=1 j=1

where ¢ > 0, dy,...,d,, and I, ...,[, are given real numbers.

Three-parameter families of solutions are constructed for these equations. In this
case, some ideas of papers [1-3] were used.

We prove theorems showing that the solutions obtained are classical ones provided
that the real parts of the symbols of the corresponding differential-difference operators
are positive. Classes of equations for which these conditions are satisfied are given.
Detailed results of the study are published in [4].
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Peculiarity of solutions of Laplace equation as
applied to the problem of describing the motion
of a hydrodynamic discontinuity in a potential
and incompressible flow in an external region

M. L. Zaytsev

Moscow, Russia

When considering the motion of hydrodynamic discontinuities, a potential and
incompressible flow in front of the surface of discontinuityis is usually assumed. This
creates a mathematical feature that can fundamentally change the idea of the motion
of discontinuities propagating in potential and incompressible flows. It is well known
that for vanishingly low viscosity, the integral relation on the boundary (Dirichlet,
Neumann problems) connects the tangential and normal components of the velocity.
Knowing one of them along the boundary of the discontinuity, one can determine the
entire external flow. However, assuming the external flow is smooth, this will also
be the case for all derivatives of velocity with respect to coordinates and time. Then
a paradox arises, knowing the position of the discontinuity and the velocity data at
a point on its surface, it is possible to determine the motion of this discontinuity
without taking into account the influence of the flow behind the front, as well as
the entire external flow. There is no physical explanation for this mechanism. It is
possible that a boundary layer is formed in front of the front, where viscosity plays a
significant role and the Euler equations are violated.

As is known, a harmonic function is infinitely differentiable within the domain
of definition. Let us single out a certain region in the external flow so that it lies
entirely outside the front. Then, differentiating the potential of the fluid velocity
by coordinates and time, one can get on its boundary an infinite number of integro-
differential relations for only two surface unknowns dp/dn and ¢, where @ is the fluid
velocity potential. It is possible that not all of these equations are independent. Some
are complex consequences of the others.

A new symmetric interior penalty discontinuous
Galerkin formulation for the Serre—Green—Naghdi
equations
M. Zefzouf

University of Montpellier, Montpellier, France

M. Fabien

University of Montpellier, Montpellier, France

In this oral presentation we will talk about the construction of a new discontinuous
Galerkin discrete formulation to approximate the solution of the Serre—Green—Naghdi
(SGN) equations in the one-dimensional horizontal framework. Such equations de-
scribe the time evolution of shallow water free surface flows in the fully nonlinear
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and weakly dispersive asymptotic approximation regime. A new non conforming dis-
crete formulation belonging to the family of symmetric interior penalty discontinuous
Galerkin methods (SIP-DG) is introduced to accurately approximate the solutions
of the second-order elliptic operator occurring in the SGN equations [2]. We show
that the corresponding discrete bilinear form enjoys some consistency and coerciv-
ity properties, thus ensuring that the corresponding discrete problem is well-posed.
The resulting global discrete formulation is then validated through an extended set
of benchmarks, including convergence studies and comparisons with data taken from
experiments. This formulation can be extended to the SGN equations with vorticity
in the one-dimensional horizontal case [1]. Such equations have the interesting feature
of accounting for the full vertical dynamics of the vorticity, while being defined only in
terms of flow variables that do not have any vertical dependency. We perform several
numerical validations, concerning the propagation, transformations, and interactions
of stable rotational solitary waves.
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On the index of differential-difference operators
in an infinite cylinder

K. N. Zhuikov
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

In the infinite cylinder M = S* x R with coordinates (x,t), the action of the group
7Z is given by the diffeomorphisms g*: M — M, k € Z, where g(z,t) = (x,t + 27).
We consider the following operator in M:

D =Y D,T*: H* 7 (M, CN) —s H*=™7 7" (M, CN), (1)
k

where Dy, is a matrix differential operator of order < m in M, T*u(z,t) = u(x, t—27k)
is a shift operator with respect to ¢, and HS’”/_’7+(M) is a weighted Sobolev space
(see [1]). Here we assume that only a finite number of terms in sum (1) are nonzero,
and the coefficients Dy, do not depend on ¢ for large ¢.

The interior symbol of operator (1) at a point (z,t,&,p) € TgM = {(z,t,£,p) |
€2 + p? # 0} of the cotangent bundle without the zero section is an operator-valued
function o: ¢?(Z, ) @ CN — ¢2(Z, u) @ CV given by the formula

o(D)(z,t,6,p) =Y _ o(Dy) (@, t + 2mn, &, p) T, (2)
k

where o(Dy,) is the principal symbol of Dy, and Tw(n) = w(n—1) is the shift operator.
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The conormal symbol of operator (1) is a pair (o, 0. ) of the parameter-dependent
families

0z (D)(p) =) Dif(p)e™”, where D (p) = Dj; (x, —id/dz, 00, p) 3)
k

are the conormal symbols of Dy (xz, —i0/0x,t, —i0/0t) at t = £o0, respectively.

Operator (1) is called elliptic if operator (2) is invertible for all (z,t,&,p) € Ty M,
and operators (3) are invertible on the weight lines L.+ = {p € C | Imp = »*}.
Moreover, it is proved in [2] that operator (1) is invertible for large p € L.+ if its
internal symbol (2) is elliptic.

We obtained an index formula for elliptic operators (1) in terms of symbols (2)
and (3). In particular, we defined the n-invariant [3] of families (3) taking into account
the contribution of infinity to the index formula. In the absence of shifts (i.e. D = Dy
in (1)), our formula yields the Fedosov—Schulze-Tarkhanov formula (cf. [4]).

The research was supported in part by Young Russian Mathematics award, as well
as RFBR and DFG, project No. 21-51-12006.
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HenokanbHasa kpaeBasg 3aga4da CTeKJoBa NEePBOro
KJiacca JIJIsi ypaBHEHUS TEIJIOIPOBOIHOCTHI
A.A. AnnxaHos

Cesepo-Kaekasckuii ueHTp MmaTemaTuyeckux uccnegosanuii, Cesepo-Kaekasckuii
denepanshblii yHusepcutet, Ctasponons, Poccus

B pa6ore B. A. Crekosa [1, ¢. 67] /1 ypaBHEHUsI TEIIONPOBOHOCTH U3y IAIACH
HeJIOKAJIbHAA KpaeBas 3a/1a49a

{alu(a, t) 4+ asug(a,t) + agu(b, t) + agus (b, t) =0, (1)

bru(a,t) + baug(a,t) + bsu(b,t) + byu,(b,t) = 0,

e ag, br, k = 1,2, 3,4, — HekoTOpbIe 3aJaHHBIE TNC/IA.

Hesnokasbubie kpaesbie yeaoBus (1) pacnajgaioresa Ha nBa ciydad. B mepBoM ciry-
gae cucrema (1) paspenmMa OTHOCHTEIBHO IIPOU3BOIHBIX, T. €. agby —asbs # 0. 3mech
HeJIOKAJbHBIE yeiioBHsl (1) MOTYT GBITH IIPEICTABIEHBI B BUIE

ug(a,t) = aula,t) + fu(b,t), —uy(b,t) =~yu(a,t)+ ou(b,t).
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B paGore [1, cTp. 67] 3T ycaoBust GBI HA3BAHBL yCJIOBUSIME IIEPBOTO KJIACCA.

Bo Bropom ciyuae cucrema (1) He paspemmMa OTHOCUTEIBHO IPOU3BOIHBIX, T. €.
agby — agby = 0. B aToM citydae Hesokaabbie ycaoBus (1) MOryT GbITH OPEICTABIICHDI
B BHjIE

u(a,t) = au(b,t), uz(b,t) = Puz(a,t)+ yu(b,t).

DT ycaoBusi OB HA3BAHBI YCJIOBUIMHI BTOPOro Kiacca. s pernenust ypaBHeHUs
TEIJIOPOBOJTHOCTH C HEJIOKATHHBIMY KPaeBbIME yCa0BusAMI CTEKI0Ba BTOPOTO KJIACCa
st cygaes 1) |of < 1, |8l < 1luy < 0wm 2) |af > 1, |8 >1u afy <0, 6bum
MOCTPOEHBI AIIPUOPHBIE OIEHKH B padore [2].

B pabore [1, ¢. 69] 6111 TOCTPOEHBI ANPUOPHDIE OLUEHKY JIJIs PENICHHs] Y PABHEHMsI
TEIJIONPOBOJIHOCTH € HEJIOKAJbHBIMHU YCJIOBUSIME IIEPBOTO KJIACCA B CJIydae

4a6 — (B+7)* >0, a>0.

B mammoit pabote moJrydeHbl allpuOpHBIE OIEHKHU PEIeHNs HEJTOKAIbHON KpaeBoii 3a-
nmaan CTeKJI0Ba MepBOro KJIacca JIJisl yPaBHEHUsI TEIIOIPOBOIHOCTH ¢ 6oJIee TMUPOKUM
OXBATOM TIAPAMETPOB (v, (3, Y U §, YAOBJIETBOPSIONINX CJETYIONINM YCIOBHSIM:

ab—py>0, (a—0)*—=B—-9)%*>0, a+d>0.

Uccnenopanue BBITIOTHEHO 3a cueT rpanTa Poccuitckoro HaywdHoro domma Ne 22-

21-00363.
Crucok jaureparypbl
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[2] AmuxanoB A.A. YeToHUIMBOCTD M CXOANMOCTH PA3HOCTHBIX CXEM, AIIPOKCUMUPY-

IOIIUX HEJIOKAJbHYI0 KpaeByio 3ajgady CrekJioBa BTOporo kjacca, ugd. ypasH.,
51, Ne 1, 95-108 (2015).

BroipoxkgeHHoe JinHeliHOe ypaBHEHHE C HECKOJIbKUMU
ApoOHbIMHI Npon3BoaHbIMU ['epacumoBa—KaryTo

K. B. Boliko

YensbuHcknii rocyaapcTeeHHblii yHuepcutet, HYensibunck, Poccus

Pacemorpum snHeliHOEe HEOTHOPOIHOE YPABHEHUE JTPOOHOTO TOPSIKA

n

DfLa(t) = Y  Di* Mya(t) + g(t), (1)
k=1

rjie Df — npobrasi nponssoaHas lepacumoBa—Kamyro nopsaka 8 > 0 [2], B cay-
qae ker L # {0}, tme L, My, € L(X;)) (yuneiinble orpaHudeHHbIE OLEPATOPHI), k =
1,2,...,n—1, M,, € Cl(X;)Y) (muneitnbiii 3amxuyThiii oneparop), 0 < a3 < ag <
e <ap<a,m=[a], mp=[ag], k=1,2,...,n, g€ C([0,T]; ).

Ecmu M, (L,0)-orpanuden, TO CyIIECTBYIOT IIPOEKTOPBI

p-_L / (WL — M) "'Ldp € LX), Q= — / L(uL — My,) " Ydp € L(Y)

211 21
|u|=R [u|=R
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npu Takom R > 0, aro 0% (M,,) C {p € C: |u| < R} [1]. Pemennenm 3amaun
D0 =2;,1=0,1,....,mp — 1, (Px)V0) =2, l =mp,mn+1,...,m—1, (2)

nns ypasaenus (1) Oynem maswiBarh dyukunuio x : [0,7] — X, ays koTopoit x €
C™=1([0,T); X), D¥Lx, D{* Mz € C([0,T);Y), k = 1,2...,n, BbIIOIHAIOTC pa-
Bercrsa (1) mpm Beex t € [0,7] u (2).

Teopema 1 (cm. [2]). Hyemo L, My € L(X;Y), k=1,2,...,n—1, M,, € Cl(X;))
(L,0)-oepanuyen, MpP = QMy, k = 1,2,....,n—1, g € C([0,T];Y), 1 € X npu
1=0,1,....m,— 1,z € X, l=mu,m,+1,...,m—1. Tozda cywecmeyem edun-
cmeennoe pewerue 3adavwu (1), (2).

Bameuanne 1. Ecmm oneparop M, (L,0)-orpanmuesn, yenosus (Px)®(0) = z; € X!
sxuBastenthbl yestosusam (Lx) D (0) = y; = Loy € Y npu | = my,,my,, +1,...,m — 1.

Pabora BeimostHena npu momzeprxkke Poccuiickoro ¢dporma GyHIaMeHTaIbHBIX UC-
caesoBannii, mpoekT Ne 21-51-54003.
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KounokalimoHHO-BapualnOHHbIE TTOAXOAbI K
pelleHnio NHTerpaJbHbIX ypaBHeHuii BoabTeppa
I pona

M. B. BynaTos

WHctuTtyT guHamukm cuctem n teopuu ynpasnerus um. B. M. Matpocosa CO PAH,
NpkyTck, Poccusa

E. B. Mapkoea

Nuctutyt cnctem anepretukn um. J1. A. Menentsesa CO PAH, VpkyTtck, Poccus

MHoruve npukIaHbIe 331291 UCIOIb3YIOT JJI MaTeMaTUIeCKON IIOCTAHOBKY HHTE-
rpajibHbIE MOJIENH, T7Ie KIIFOUEeBY0 POJIb UrpaeT ypasHeHne Bosabreppa I pona [1,2]. B
JAHHOIT paboTe paccMaTpHUBaeTCs KIaccuieckoe ypasuenne Bosbreppa I poma Ha Ko-
HeuHOM oTpe3ke. [Ipeamonaraercs, 9To PO U MpaBas 9aCTh YPABHEHUS YIOBJIETBO-
PSIOT cTaHmapTHBIM TpeboBauusM. /{15t co3manmst 1 000CHOBAHUS YUCIEHHBIX METOIOB
PEeIleHnsT TAKNX YPABHEHUIN BayKHYIO POJIb UTPAET MOHATUE UX CTEIEHU HEYyCTOWINBO-
ctu 2], 6iu3Koe TOHATHIO UHEKCa Juist muddepeHIManbHO-aIrefpaniecKux ypaBHe-
auit (JJAY) [3]. TlosToMy HEKOTODBIE IOAXO/IBI, PA3BUTHIE JJIsl IMCJIEHHOTO DETIEeHMsI
JAY [4,5], MOXKHO IPUMEHSITD U JJIsl YUCJICHHOIO PENIeHNs HHTEIPAJIbHBIX YPABHEHUIT
Boabreppa I pona.
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st pertenust ypasuenuit Bosbreppa I poma co crenenbio HeycTofrauBocTu 1 MbI
IIpEeJJIAraeM OJTHOIIATOBBIE METO/IbI, B OCHOBY IIOCTPOEHUS KOTOPBIX MOJIOXKEHBI JIBY X~
[IIArOBBIE KBAJIPATYPHBIE METOBL. AJITOPUTM YUCJIEHHOI'O METOJIa BKJIIOIALT STAIl MU-
HUMU3AIMH HOPMBI TPUOJINKEHHOTO PEIIeHUsI B HEKOTOPBIX AHAJIOTAX IIPOCTPAHCTBA
CoboJieBa, 9T0 06ECIIEYNBAET YCTONINBOCTD MIPEJIJIOYKEHHBIX METOJIOB. TeopeTuyecKue
BBIKJIAJIKU [TO/ITBEPKIAIOTCS PE3YIBTATAMI PACIETOB JJIsI M3BECTHBIX T€CTOBBIX IPH-
MepoB [6].

Pabora Beinosnnena npu dbunancosoii nopgep:xkke PODU (kox npoekra Ne 20-51-
S52003 MHT _a).
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BruiBoa ypaBHeHMIT 3JIEKTPOAMHAMUKNA W TPABUTAIAN
13 NPUHIUIA HAMMEHBIITEro AeiicTBUs
I'mnbb6epra—Iitnmreitna—IIaynn

B. B. Beaensnux
WHcTtutyT npuknagHoii matematuku um. M. B. Kengbiwa PAH, Mockea, Poccusi

H.H. ®umun

WNHcTuTyT npuknagHoii matematuku nm. M. B. Kengbiwa PAH, Mockea, Poccus

B. M. Heuetkun
WNHcTuTyT npuknagHoii matematuku nm. M. B. Kengbiwa PAH, Mockea, Poccus

B pabore ommcano nosydenue ypaBHEHHUIl 37eKTPOJMHAMUAKYI 1 TPABUTAIINU B 3a-
MKHyTOI hopMe U3 IPUHITUIIA HANMEHbBINETo AeHCTBUA B (POpMe CUCTEMBI yPaBHEHHN
tuna Biracosa [1-3]. TIposicusieTcst cMmbIca ypasHeHuit Tuia BiiacoBa: 9T0 ¢JMHCTBEH-
HBII TIOKa CIIOCOO IOIYYUTb W ypPaBHEHHE I'DABUTAIUN, H YPABHEHHS SJIEKTPOIUHA-
MUKHI W3 HIPUHINIA HAUMEHbBIIEro JIeHCTBUA. A Takyke eIMHCTBEHHBIN [OKa CIIOCOD
3aMKHYTb CHUCTEMYy yDaBHEHHI I'DaBUTaIUU U 3JIEKTPOAMHAMUKH C IIOMOIIBIO IIPHH-
A8 HAUMEHBIIEro JefCTBHUSA, UCIOb3yst DYHKIMIO PACIpE/IeeHnst 00bEKTOB (IJIeK-
TPOHOB, MOHOB, 3BE3/] B TAJAKTUKAX, MAJIAKTHK B CyleprajJakTUKax Win BceeseHHOI)
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[0 CKOPOCTSIM U TIpocTpancTBy. COOTBETCTBYIONINE YPABHEHUST THIPOINHAMUIECKOTO
ypOoBHsI (HAIIpUMED, YPABHEHMsI MATHUTHON MIPOJUHAMUKN) TAKYKE €CTECTBEHHO 10~
JIydaTh U3 ypaBHeHuil tura BiacoBa rupomHaMudeckoil HoICTaHOBKOM (10K euH-
CTBEHHBIN CIIOCOD CBSA3M ¢ KJIACCHYECKUM JefCTBHEM W Jisl 9TUX ypasHeHwuit) [4,5].
IIpencraBisier 3HAYUTEIBHBII HHTEPEC UCCIIEOBATD PA3INYHbIE KJIACCHI PEIEeHHIT 10~
JIy9I€HHBIX yPABHEHU, KaK 3TO Jeay0ch B [6,7]. Ocobblii MHTepec MOKHO MPEICTaB-
JIATH ACHUMIITOTHYIECKOE IMTOBEJIEHNE peleHnii ypaBHenuit BiacoBa, u TyT Morya Obl
HOMOYb €ro aHAJOrus ¢ ypasHenueM Jluysusuis [8]. Mbl nokazaam takxke, 9To HOJLY-
JeHHbIe yYpaBHEHUs THUla BjacoBa MO/KHBI ObITh IIPUMEHEHBI K 00bsICHEHUIO SBOJIIO-
nuu Beenennoit, Tak Kak nMeHHO u3 ypasHenuit Bimacoa—Ilyaccona caemayior Hepe-
JSTUBUCTCKYE aHasorn permennit @puavana, permenns Mumaa—Max-Kpu [9,10]. Tpu
9TOM OHU $IBJISIOTCS TOYHBIM CJieJCcTBUeM ypaBHenmii BiacoBa—Ilyaccona, mosromy
nosyvarorcd 6e3 3BpucTUYecKuX npeznosoxkenuii pador [9,10] u obocHoBbIBaIOT 1
0000ITAOT UX. DTU PENIeHus MO3BOJININ BBISICHUTD POJIb JSMOJIa-1JI€HA, €r0 IKBU-
BaJIEHTHOCTD NOTeHNnaIy 1'yp3a/idHa U 9KBUBAJEHTHOCTb 3TOTO JII000# OIHOPOIHOM
cyOCTaHITNH, CBA3aHHOI ¢ perenneM ypasuenus [lyaccona. [IpaBas qacTs ypaBHEHUS
OitHmnTeiiHa JaeT HAJIEXK Ly Ha 00bsICHEHIE YCKOPEHHOI0 paciiupenns: BeesjenHoit 6e3
9THUX JOMOJTHUTEIbHBIX IIPE/ITOI0OKEHMIA.
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DHTponuiiHoe peleHne AJsd ypPaBHEHUS C
CUHTYJIIPHBIM MOTEHIINAJIOM B I'MIIepPO0IMYeCKOM
IIPOCTPAHCTBE

B. ®. BunbgaHosa
Nnctutyt matemaTtuku ¢ BLL YVOULL PAH, Vda, Poccus

Paccmorpum 3a1aay
—divg(a(z,u,Vgu)) + Bu= f, wulour =0, fe Li(H"). (1)

Bynem paccmarpusaTh orepaTop BHIa

1 9 y
Bu = —ﬁg—u(ﬂkg”u% V) HulPo @ 20 b, u, du) = Aut|ulPo D 2ut-b(z, u, du),

rae GyHKIHI Fik (x) npunagexar L1 1oc(H™), n npu mobom x € H™ s1eMeHTHI Fi’C (x)
3a/1a10T HEOTPHUIATEJIBHO Ollpeiesiennyto Marpuity. leiicrue oneparopa A : D(H") —
D'(H™) onpenensiercst bopmy.oit

(Au,v) = /(Fikgijumj\/gvm)dx = /(Fvgu,dv)du , u,v € D(H™"). (2)
B1 H~

Bekrophoe nosie a B ypasuenuu (1) yIoBiaerBopsieT yCJIOBUSAM OrPAHUYEHHOCTHU C
q < p(x)

la(z, u, )2 ™) < C(G(@) + [ul? + [yP™)),  G(z) € Ly(H"), (3)
KO3PIUTUBHOCTH
(a(z,u,y),y) = co|y\p(m) —G(x), veR, zeH", yeT;H", c¢>0, (4

MOHOTOHHOCTH
(a(x,u,y)—a(x,u,z),y—z)>O, y#z (5)

Kpowme Toro, mycTh cripaBeiuBbl HEPABEHCTBA
bz u, )| < C (g +Ga)), (b(w,u,y).y) > 0. (6)

[Ipocrpancrso B,y (H") — nonommernne D(H") mo mopwme

[ullpey,a = Nl + VA, u).

Omnpenenenne 1. dumponutinvim pewenuem 3anaan Jnpuxie HaspiBaercs QyHKIMs
u Taxag, aro Ty (u) € By (H") npn mobom k > 0

1) B(z) =b(x,u,du) € Li(H");

2) mpu Beex k > 0, £ € O} (H™) cnpaBeammBo HepaBeHCTEO
/(a(%u,dU),d(Tk(U—§)))dV+<Au+\u|p°(m)_2u+b($,u,dU)—f,Tk(u—f» <0. (7)
H"'L
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Teopema 1. ITycmov svinoanenvt yeaosus wa a, F, b. Tozda cyuwecmeyem snmponuti-
Hoe pewenue 3adawu Jupuzae.

ChnekTpaJjbHbBIE CBOICTBA
anddepeHInaIbHO-PA3HOCTHBIX OIIEPATOPOB
Ha KOHEYHOM WHTEepBaJie

P.HO. BopoTHukos

Poccuiicknii ynusepcutet apyx6el Hapogos, Mocksa, Poccus

Teopust muddepeHnmaabHBIX YypaBHEHUN C OTKJIOHSIONUMCSH APTYMEHTOM BEJIET
CBOIO MICTOPHUIO C CEPEIUHBI MPONLIOro Beka. Cpen Becex Takux 3a/1ad CIeyeT BblIe-
JIUTH 3a/1a9¥, B KOTOPBIX CJBUIY IIPUCYTCTBYIOT B CTAPIINX UjeHaX ypaBHeHuii. Ta-
KH€ 3a/1a91 PACCMATPUBAJINCH, HanpuMmep, B paborax [1,2]. Beuto obHapykeHo, 1uTO,
B omimdre OT OOBIKHOBEHHBIX MU dDEPEHITNATBHBIX YPABHEHUH, TJIAKOCTD PEIeHI
nuddepeHnnaIbHO-PA3SHOCTHBIX YPABHEHUI MOYKET HAPYIIATHCS BHYTPU MHTEPBAJIA,
9TO CBS3aHO CO CABUTAMHU TOYEK I'DAHUIBI BHYTPb HHTEPBAJIA.

B nasbrefinmem mogo6HbIe 331891 U3ydaauck B paborax [3-6]. Tak, Hanpumep, B
pabotax [5, 6] GbLIM TOMYUEeHBI YCJIOBHSI JJIsl COXPAHEHUST TJIaIKOCTH PEIeHUN ypaB-
HeHus Uit udDepeHImaibHO-PA3HOCTHOTO OIEPATOPa JJIs TPOU3BOJILHON IIPaBOi
qacTu. MbI paccMaTpuBaeM 3a/ady Ha COOCTBEHHBIE 3HAYUEHUS U COOCTBEHHBIE (DYHK-
mu auddepeHnnaaIbHO-pPa3HOCTHOTO OMEPATOpa ¢ MOCTOSTHHBIMU KO3(M(MUITMEHTAMI
Ha WHTEPBaJIe TeJIOi JUINHBI ¢ KpaeBbIME ycsaoBusaMu Jupuxite. OTmaneM OT mpeIbl-
aymux paboT sBiisieTcss TOT GaKT, 9TO BHJ OPABOIl YacTH B TaKOH 3ajiatde OTHIOND
HE MPOU3BOJIEH, UTO HE TO3BOJISIET MPUMEHSATH METOJIbI, UCIOJIB3YIONNEeCs B IPEJIbI-
gymmx paborax. HamMu mosiydeHbl J0CTATOYHBIE YCJIOBUSI CYIIECTBOBAHUS PENTEHU
(coberBenubix byHKIMIA), MIAIKOCTh KOTOPBIX HAPYNIACTCI BHYTPU HHTEDPBAJIA.
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MogaenupoBanue (pa30BbIX IIE€PEXOI0B B IIOBU>KHbBIX
cpegax

P. K. laligykos
HaLl,VIOHaJ']beIVI I/ICCJ'Ie,EI,OBaTeJ'IbCKVIVI YHUBEPCUTET ((BbICLIJaﬂ LLIKOJ1a SKOHOMUUNKN >,
Mockgsa, Poccus

B.I. aHnunos

HaumoHanbHbIli nccnefoBaTenbCkunii yHueepcuteT «Boicluas wkona skoHOMUmMKM,
Mocksa, Poccus

B nmoknane mpesicraBieHo uccieoBanme (pa30BoOro mepexosia B 3a/1ade 00TeKAHUST
TBepoi bas3bl BelecTBa ero KuAKoh daszoil (Hampumep, Je1—BoIa) IPU OCTATOY-
HO OoJsIbINUX umcsiax PeliHosbica. DTa 3a7a1ua pa3e/sercs: YCJIOBHO Ha JBe: 3a/1a4a,
00TeKaHNsT TOBEPXHOCTHU U 33/1a49a O (hba30BOM IEPEXO/IE.

[Ipenmonaraercs, 4To Ha rpaHulle pasjesna a3 Ys €CTh MaJjas JIOKAJIN30BaAHHAS
HEPOBHOCTH, KOTOPasi B HAYAJIbHBIII MOMEHT BPEMEHU MMeET BUJL

_4/3
ys = e2u(( — o) /e),
—1/2 " "
rie e = Re™ /2 — manprit mapanerp, pu(z) € S(RY), em. puc. 1. Takoii BEIGOp HaaIb-
HOI (DOPMBI HEPOBHOCTH TIPUBOUT K JIBYXHAJYOHOU CTPYKTYpE HOIPAHUIHOTO CJIOST
00TEKAIOIETO ee TOTOKA, COCTOAIEH U3 KIACCHIeCKOTO MOMPAHUIHOTO citost [Ipam s
¥ TOHKOT'O TIOTPAHCJIOS BHYTpH Hero, cM. objactu 11 u I na puc. 1, coorBeTcTBEHHO.

Puc. 1: I'eomeTpus paccmaTpuBaeMoil 3a7la4u B HAYAIbHBIN MOMeHT Bpemenu, Up —
tedyenne bransyca, Uy, — miockonapauiebHbIN TOTOK

®Daz0BbIll TIEPEXO/T PACCMATPUBACTCS B PAMKaX MOE N (Pa30BOr0 MOJIA. JTO MO3-
BOJISIET M30€XKATh OTIAEHLHOTO BBIYUCECHUS TOYHOIO IOJIOXKEHUsI TPAHUIIBI Pa3Jesia
da3 — oHa, ¢ TOYHOCTHIO JIO0 IMapaMeTPa PeryJsipu3alud B cucteMe (ha30BOrO IOJ,
ONMCHIBAETCS JIMHUEH HY/JIE€BOrO YPOBHS (DYHKIIUU MOPSIKA, OIpEIeIsieMoil BO Bceit
00JIACTH PEIeHnsT 3a/[a91. DTO JIAeT BO3MOKHOCTD UCIIOIH30BATh TPAUITUOHHBIE Pa3-
HOCTHBIE CXEMBI JIJIsl PEIIeHUsT 38121, BOSHUKAIOMINX IIPU ACUMIITOTUIECKON PEITyKITIH.

Takum obpa3om, 3a/1ata peraeTcs KOMOMHUPOBAHIEM U3BECTHON TEXHUKU OITHCA~
HU$ JBYXIAJIOYHON CTPYKTYPHI HOTPAHIYIHOIO CJI0S U PE3YITATOB ACUMITOTUIECKOTO
MCCJIeIOBAHUS CUCTEMBI (hpa30Boro mojs. Perrenne 3agaun oOTeKaHus C IBYXTATYO-
HO# CTPYKTYpOil Npy 3aJaHHOM 3aKOHE M3MEHEHUU BO BpeMeHH (DOPMbI HEDOBHOCTHU
HA IJIACTUHE U3JI0XKeHO B [1], B TOM 4nciie IpUuBeeHbl Pe3y/IbTaThl YUCIEHHOIO MOJIE-
JINPOBaHUS TEYCHUS JJIs PA3JIMIHBIX TUIIOB 3TUX 3aKOHOB.
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Nurerpo-anddepeniimaibable ypaBHEHUS
C OrpaHUYEHHBIME OllepaTopaMu B DAHAXOBBIX
MPOCTPAHCTBAX U UX NPUJIOXKEHUSI

A.[l. TonoBa

YenabuHcknii rocygapcteeHtblii yHusepcuteT, Hensabunck, Poccnsa

B. E. ®epopos

YensbuHcknii rocygapcreeHHblii yHneepcuteT, HYensabunck, Poccus

ITycrs X — 6anaxoso nupocrpanctso, A € L(X), 1.e. A — juHeiliHbI OrpaHuyeH-
ublit oneparop, K € C(Ry; £(X)). Oupenenum uarerpo-auddepenimaibHblii onepa-
top tuna ['epacumona

DEma(t) .= JE(D™2)( /Kt—s 2™ (s)ds,

e D™ — mpou3BoHAS TOPSIIKA M.

Teopema. IIycmv A € L(X), K € C(Ry4; L(X)), cywecmsyem npeobpasosanue Jla-
naaca K, kxomopoe asasemea 00nosnaunol anasumuveckol gynkyuet 6 Qp, := {p €
C: |u| > Ro, |arg p| < 7} npu nexomopom Ry > 0 u ydosaemesopaem ycaosuro

>0 Fe>0 YAEQr, KWl > A, (1)

npu amom oas ecex A € Qpr, cyuecmsyem IA(()\)%EE(X). Tozda das ecex xg, x1, .. .,
Tm_1 € X cywecmeyem eduncmeennoe pewenue sadavu Kowu ) (0) = zp € X,
k=0,1,....,m — 1, daa ypasnenua (DXmx)(t) = Ax(t) + f(t) npu t € [0,T], 20e
feC(0,T); X). Pewernue umeem 6ud

m—1

(t) =) Yilt xk—l—/Xm 1(t — 8) f(s)ds,

k=0

1 ~ ~
Yi(t) = — / AMKE(N) — A)TLEW)AT RGN, B =0,1,...,m — 1,
QR
1 .
Xpo1(t) = 5 (AKX — A)~IammteMdN, R > Ry.
™
IR

IIpumep 1. Ilpu K(s) = Is*1/T'(a) mmeem mpobuyio mponssomyto Lepacumona —
KamyTo.
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IIpumep 2. Ilyctba € R, a >0, 3 € (0,1), K(s) = s PE,1-p(as®)I,tne Eq1-5 —
dbyukua Murrar-Jleddaepa. Torma K (A) = XHA=L(\> — ¢)~'] ynosmerBopser
yeaosmio (1) ¢ x € (0,3) u obparuma npu |[A| > a'/%. B srom ciydae mosydaem
IpobHYI0 pon3BojHyo IIpabxakapa [1].

Pabora BoImtosTHEHA B paMKax MpoekTa 1o rpanTy Ipesuaenta PO s momaepKKu
Bexymux HaydHbIX mroa HIM-2708.2022.1.1.

Crnucok jaureparypsbl

[1] Kilbas A.A., Saigo M., Saxena R.K. Generalized Mittag-Leffler function
and generalized fractional calculus operators, Integral Transforms and Special
Functions, 15, Ne 1, 31-49 (2004).

O ckopocTu crabuim3anuu penieHus 3aaa4un Komm
AJig Iapado/IMYecKoro ypaBHEeHUS BTOPOro MOPSAKa
C pacTyniuM#u cTapommMun Ko3addunmuenramu

B.H. exncos

MockoBcknii rocyaapcTeeHHblli yHuBepcutet um. M. B. Jlomonocosa, Mockea, Poccus

B ENtL N > 3, paccmorpnm 3amauy Komm st mapaboIndecKoro ypaBHEHHUsT
+ s y y
2-ro mopgAaKa ¢ MaaImMuMu KoadgGuimenTaMu 1 HadaabHo dyHkimedt ug(x)

Lu=0, (v,t)€ BT, wu(z,0)=uo(z). (1)

Iycrs koaddurmentsr a;x(x,t) ypasaenus (1) yaoBaeTBopgioT ycaoBuo napabo-
JITIHOCTH

N
AB(leDIER < D ain(w, &gk < ATb(lDIEL, (2)
ik=1
rue
b(|z|) = max(1, |z|*), 3)
N
> [bila, )| < Bmax(1, |z)), (4)
i=1
u BblnosiHeHo ycsosue (C):
c(x,t) < —B2 (5)
st moboro (x,t) B EY L
Hawanbuas dyuxmms
uo(x) € C(BN), lug(x)] < M(L+|z|™), m >0, zeB". (6)

138



Teopema 1.

1. Ecau ug(z)eC(EN) ydosaemsopsaem (6), C(x,t) ydosiemsopaem ycaosuro (C)
npu 2 > XNm(m+ S —2) = 82, tue

M(N-1)+X+B

S:
A3 ’

mo pewenue 3adavu (1) umeem npeden

lim wu(z,t) =0 (7

t—+oo
PABHOMEPHO OMMHOCUMEADBHO T HA naofc&oM romnaxme K (53 EN

2. Ecau
62 > )‘%(S - 1)7

mo das a060ti ug(xr) € C(EN) u ozpanunennot 6 EN cnpasedausa oyenka dns
PeweHus

lu(z, t)| S Mt™5, M >0, t>t; >0, (8)

pasromepro no x na xascdom xomnaxme K ¢ BV,

2-5S++vD;
2 )

A= Dy =(2-S5)+458% B=

5-02
AL
Crucok aureparypbl

[1] Henucos B.H. O nosejgennn pemenuit napabondecKux ypaBHEHU Ipyu GOJIbITIX
3HAYEHUAX BPEMEHHU, Ycn. mam. nayk, 60, Ne 4, 145-212 (2005).

O HEKOTOPbIX HEJIOKaJIbHBbIX 3a/JadaX TeOPHHN II0JIdA
Ha IIJIOCKOCTHU

FO. A. [lybuHckuii

HaumoHanbHbiil uccnegosatensckuii ynusepcutetr « MOU», Mockea, Poccus

IIpennmaraercss pacCMOTPETH PsiJi HEJIOKAJIHHBIX KPAEBBIX 3379 TEOPHUH MOJIT Ha
IJIOCKOCTH, OTIPEJIETIEHHBIX sipaMu (DYHKITMOHAJIOB cyiefia B mpocTpancTBe CobosreBa

1
W5 (G).

B ciyuae perysnsaproro yHKIMOHATA CJI€Ia IPUMEPOM TAKOH 3a/[a9d SBJISETCS
3aga4a

—Au(x) = h(x),x € R?,
/und’y—O
r

0
u =an(y),yeT,

on |
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rjie n () — BeKTOp HOpMaJIM Ha rparure obaactu I'. B 910l 3a1a1e nckoMbiMu Hens-
BECTHBIMU sIBJIsTIOTCs BekTop-pyHKims u(x) € Wi (G) u uucio a.

B cayuae cuHTySIsSIpHOTO CjIeia JjIsl TTOCTAHOBKHU 3aJIa9H CYNIECTBEHHA TEOPEMa O
crejie, sIBJISIIONIASICS «IJIOCKUM» BAPUAHTOM CYIIECTBOBAHUS CJIe/ia JIUHEIHOW KoMOu-
HAINT

Dru= % — [rotu;n] — (divu) n

B Cjly4dae TPeXMEepPHBIX II0JIeit.
st mutockux mosteit u = (uq; ug) TAKON CHHTYJISIDHBIN CJI€J] NMEET JIMHEHHAsT KOM-
onHamusg

Ju .
Dru= I (rotpiu) T — (divu) n,

rjie rotpu = g—gf — g—g; — mwiockuii oneparop I'puna, a 7 = (71; T2) — KacarebHbI
BEKTOp, COIVIACOBAHHBII ¢ HOPMaJIbio N (pOpMyIaMH T; = —Ng, Ty = 11

XapakTepHBIME IPUMEPAME KPaeBBbIX 3a/[a4, OTBEYAIOUX APy oreparopa Dr,
SABJISIOTCS CJIEIYIONTe 33 a9u:

1.
—Au(x) = h(x),x € R?,
/ [(Z_Z’T) — rotplu} dvy =0,
r
Jdu
bl T
an . ar (y),y €T,
rje a — TaK»Ke HCKOMOE 9HCIIO.
2.

—Au(x) = h(x),x € R?,

/ {(8—u,n) —divu] dy =0,
on
r

ou

% :an(ly)fyer‘

T

PaGoTa BbIIOIHEHA B paMKaX TOCYIAPCTBEHHOrO 3a/aHuss MuHICTEpCTBA HAYKH 1
Beiciero obpasosanust PO (npoekr FSWT-2020-0022).

Crnucok jaureparypsbl

[1] dybunckuit FO. A. O simpax omepaTopoB cjieia U KPaeBbIX 3a/1a9ax TEOPHUH TI0JId,
IIpo6a. mam. anasusa, 106, 73-89 (2020).

[2] Ay6unckuit FO. A. O anpax GbyHKIMOHAIOB Cjlefla U IPAHUYIHBIX 33a9aX TEOPUN
nosia Ha miockocru, Tp. MUAH, 312, 158-169 (2021).
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CroxacTudeckasa MoeJib OOEBbIX JeiiCTBUIA

B.T. 3agopoxHuii
BopoHexxckuii rocynapcTeeHHblii yHuBepcuteT, BopoHex, Poccus

PacemarpuBaercs MaTemaTndeckas Mojiedb (Jlandecrepa) 6oeBbIX JeficTBUi 1BYX
IPOTUBOOOPCTBYIOIMNUX CTOPOH

C(li—j = 61(t)1‘, (1)
(cil_g; = —eo(t)x + e3(t)y, (2)
z(0) = x0,y(0) = yo- (3)

Baecy t —Bpemst, z(t), y(t) — UnuCIeHHOCTH CTOPOH B MOMEHT BPEMEHH (, £1,E2,E3 —
colydaifHble TPOIECCHl U Xg, Yo — CIIydYailHble BEJIMUYMHBI, HEe 3aBUCSAIINE OT £1,E2,E3.
ITockonbky cuctema (1), (2) 3aBHCHT OT CJIydaiflHBIX HPOIECCOB €1, E2,E3, PEIICHHE
TaKKe fBJAETC BEKTODHBIM CilydaiiHbiM nporeccoM. Hanbosbmmit nnrepec mpes-
cTaBasOT Maremarnieckoe oxxumanue E[z(t)], E[y(t)] n mucnepcnonnsie dbyHKIMN
Dlx(t)], D[y(t)] pemenus.

IIpemmonaraercsi, 9T0 CiydaifHble MPOLECCHI €1,E2,E3 3aJaHBl XapaKTePUCTHYIe-
ckUM (DYHKIIMOHAJIOM, KOTODBIIT OIPEIEJISETC PABEHCTBOM

3

Vo, us) = Blexp(i 3 [ ¢y(s)us(s)ds)]

Jj=1

rae [0,t1] —oOTpe30K BpemeHH, HA KOTOPOM HU3ydaercs 3ajada, F obo3Havaer B3s-
THe CPEJHEr0 3HAYEHUs 110 (DYHKIIMH PACIPEIEIEHNs IIPOIECCOB 1, £2, €3] Uj — CYM-
mupyembie Ha [to,t1] dyukmuu. ycrs x(to,t, s) — dyakuusa nepemennoii s € R,
onpenesentas 1o upasuiy: X(to,t,s) = sign(s — ), €ciu § IPUHAIJIEIKUT OTPE3-
Ky [min{to,t}, max{to,t}], ¥ paBHa Hy/I0 B IPOTHBHOM CJIydae.

Teopema 1. Ecau ¢yrnryuonan 1 umeem nepevie u 6Mopvie 8apUALUOHHDIE TPOU3-
sodHble, MO Mamemamuieckoe odcudarue pewernus 3adawy (1)—(3) umeem eud

E[l‘(t)] = E['IO]w(_iX(O’ t)r 0, 0)7

5
dua(s)

Ely(t)] = Elyo]¢(0,0, —ix(0,1)) +@'E[xo]/0 P(=ix(0,5),0, —ix(s, t))ds.

Onenka Bo3elicTBUS HEKOHTPOJIUPYEMbIX (PAKTOPOB
Ha (KBa3M)IMHAMUYECKYIO CUCTEMY

B. B. 3aiiues

MocCKOBCKMiA aBMaLMOHHBIN UHCTUTYT (HALMOHANBHBIA NCCNEA0BaTENLCKINIA
ynusepcutet), Mockea, Poccust

PaccmarpuBaercs 3a1ada onucanus (Hha3oBOro cOCTOsiHUs (KBA3M ) IMHAMUIECKON
CHCTEMBI ITPU BO3/IEHCTBUN HEKOHTPOMPYeMbIX (hakTopoB. [IpeamonaraeM riaikoCcTh
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U OrPAHMYEHHOCTDb TaKUX (PakTopoB. [1o100HbIE 381841 BOSHUKAIOT B JuHaMuKke JIA,
IIPOTHO3UPOBAHUHN TAPAMETPOB ITOTObI, B MOJIETUPOBAHNY OUPIKEBBIX MTOKA3aTe el B
3a/1a9ax 9KOHOMUKHU U JIP.

B 3aBucHMOCTH OT MATEMATUIECKOTO OIHCAHWS CHCTEMBI, IIPUMEHSIIOTCS PA3JINI-
HbIE METO/IbI OllEHUBaHUsI, pa3paboTanHbie aBTOpoM. JLjist cucreM, omcbiBaeMbix OJ1Y
(B 3aBUCUMOCTH OT TIOCTAHOBKY 341891 ), CTPOSITCSI TAPAHTUPYIOIINE, BEPOSITHOCTHBIE
METOJbI U COOTBETCTBYIOIIHNE aJTOPATMBI OIICHUBAHUST BIUSHUS HEKOHTPOJUPYEMBIX
GdaKTOPOB HA WHTETPAJIBHYIO BOPOHKY CHCTEMBI.

JlJ1st cucTeM, ONMCHIBAEMBIX HEHPOCETSME, CTPOUTCS CUTYAIIMOHHBIH POTHO3 C TIO-
MOTIIBIO MO/IETMPOBAHUST HEKOHTPOJNPYEMBIX (DAKTOPOB.

Ecin B HEKOTOPBIE MOMEHTBI BPEMEHH U3BECTHO (DA30BOE COCTOSTHUE CUCTEMBI, TO
OTIMCAHHBIE OTEHKH YJTyUIIAIOTCS.

PaccmarpuBatorcs npumepsl u3 gunamuku JIA (omeHuBaHue BETPOBOrO BO3Eii-
CTBU#A) U HEAPOCETEBOrO MIPOrHO3UPOBAHUS JUHAMUKA POCCUACKUX UHJIEKCOB aKIuii ¢
VYIETOM Pa3JIMIHBIX CUTYAIWii B T€OMOJUTHKE.

K 3amade o HOpMaJIbHBIX KOJIEOAHUSIX
cMecHu JIBYX KUJIKOCTel

. A. 3akopa

Kpbimckuii dpegepanbHelin yHueepcutetr umenu B. U. BepHagckoro,
Cumdpeponons, Poccust

PaccmoTpuM orparmtennyio obmacts £ C R3 ¢ 6eckomeuno riaaxoit rpannmeit 052,
ITOJTHOCTBHIO 3aII0JTHEHHYO TOMOTEHHON CMEChIO IBYX C2KUMAEMbIX KUIKOocTel. Breaém
cucremy koopauHaT OT1ToTs3, KECTKO CBA3aHHYIO C 00/acThio (), TakuM 00pasoM,
ar0 och O3 HAIpaBJIeHA MIPOTHB NEHCTBUs CUJIBI TsiKecTn —ges, g > 0, a HavIaI0
KoOpauHAT HaxomuTcs B oosactu ). [lojacrapiisis B ypaBHEHHsT CBODOIHBIX KOJI€OaHU
paccMaTpUBaeMOil CHCTEMbI DeIlleH s, 3aBUCSIIIIE OT BPeMEHH, Kak exp(—At), npuaém
K CJIeJIyIONel 3a1adue Ha COOCTBEHHBIE 3HAUCHIUS:

2 2 1/2
1 . a ¢
— E (e Aug + (i + M) Vdivay,) + — E (up —wy) — V(ll—/gl> = —Au,
PO T — pio i —
k=1 k=1 Pio
1/2
C .
- plw div(ppow) = —Ap;  (xz € Q), w =0 (xe€00), l=1,2 (1)
10

Baeck uy(x) (z = (x1, 22, x3) € Q) — nose ckopocreii KugrocTu cmecu, ¢; > 0ua > 0
— dukcnposanmble KOHCTAHTH, pio(23) = pio(0) exp(—ge; '3) — TIOTHOCTD KIITKO-
1/

~1/2 1/2
CTHL CMeCH B COCTOSTHIN PABHOBECHS, C; / Py pi(x) — OMHAMEYECKAS IITOTHOCTD XKHI-
KOCTH cMecH. MaTpHIbl BA3KocTeil {/ijk}? k1> {)\jk}? k—1 YZOBJIETBOPSIOT yCJIOBUSIM

{ij}?,kﬂ >0, {2p5. + )‘jk}?,kzl > 0.

Teopema 1. Cnexmp o 3adawu (1) pacnososcen na deticneumensbHot NOAOHCUMEND-
HOT NOAYOCU 34 UCKAOUEHUEM, DBIMD MONHCEM, KOHEUWHO20 YUCAL KOMNAEKCHO COND -
AHCEHHDIT COOCMBEHHVIT 3HAUEHUT Koneuwnol kpammocmu. Cyuecmeennvitt cnexmp
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Oess 3adauu (1) evuucasemes no gopmyse ess = EU L, 20e

E={AeC: det{2ujr + \jr — A" Sjrcepro(a3)}; 4my =0, z € Q},
L={xeC: det{3pux + \ji — )\_15jkckpk0(:ﬁ3)}§’k:1 =0, z €00},

0k — cumeon Kponexepa. Mrootcecmso 0\Oess COCMOUM U3 U3OAUPOSANHOIT COO-
CMBEHHIT 3HAMEHUT KOHEUHOT KPAMHOCTIU U CO0ePAHCUM NOINOCALI0BAMEABHOCTD C
ACUMNMOMUNECKUM NOGEOEHUEM )\,(:O) = C2BE3(1 4 0(1)), k — oo, 2de Koncmann-
ma C' mooicem Goimd GulMUCAEHA O MAMPULAM B8a3Kocmel U Pyrkyusam po (1= 1,2).

VTBepKeHNe, aHAJOTUIHOE TeopeMe 1, CIpaBeJInBO U I CMECU HECKOJBKUX
sxugkocreit. Ormerum, uTo B pabore [1] perraercsa BOIpPoOC O CymeCTBOBAHUY CJIAOBIX
O0OODIIEHHBIX PEIeHnit HeTMHEIHOM HaYaIhHO-KPAeBoii 3a/1a9H, OMUCHIBAIOIIEH 6apo-
TPOITHOE JIBUYKEHNE CMECH HECKOJBbKUX CXKUMAEMbBIX BSI3KUX JKUJIKOCTEH.

Crnucok jaureparypsbl

[1] MamonTos A.E., IIpokymua 1. A. PaspemmmocTs HECTAIMOHADHBIX yYDaBHEHUI
MHOTOKOMIIOHEHTHBIX BSI3KUX CXKUMAEMbIX XKujkocrei, Hse. PAH Cep. mamem.,

82, Ne | 151-197 (2018).

HauanbHag 3ajatva /1j1s BBIPOXKIE€HHOTO
KBa3UJIMHEIHOTO ypaBHEHUs C IPOU3BOIHBIMU
I'epacumoBa—KamyTo

T. A. 3axaposa

YensbuHcknii rocygapcreeHHblii yHneepcuteT, HYensabunck, Poccus

[Iycte X, Y — 6aHAXOBBI TPOCTPAHCTBA, Df — mpousBoanas ['epacumosa—KamyTo,
L(X;Y) — MHOXKeCTBO JIMHEHHBIX OIIEPATOPOB, HEIIPEPBIBHO JeiicTBylonwmx u3 X B ),
L(X;X) = L(X), CI(X;Y) — MHO)KeCTBO BCeX JIMHENHBIX 3aMKHYTBIX OLIEPATOPOB,
IWJIOTHO oupejieieHHbx B X u jeiicrByiomux B Y. Ilyers L, M € CI(X;)Y) umeror
obactu oniesiesterus Dy, Dy cootsercriento, ker L # {0}. O6ozmaumm wepes pl (M)
mHOKecTBO Takux u € C, aro orobpaxenune ulL — M : Dy N Dy — ) UHBEKTUBHO,
upu stom R (M) := (uL — M) 'L € L(X), L;(M) := L(uL — M)~" € L().

Myctem—1<a<meN, LM ecCl(X;Y),neN, ag <ay < - <a, <a, X
OoTKphITO B R X X" N : X = Y, T > to, [ : [to,T] — V. Pemenunem 3anaun

(Ll‘)(k)(to) = Yk k:O,l,...,m—l, (1)

DY Lx(t) = Mx(t) + N(t, Di* x(t), Di?x(t), ..., D x(t)) + f(¢) (2)

Ha oTpeske [to,t1] OymeM HasbBaTh Takyo QyHKIWMO & : [to,t1] — Dy N Dy, uto
Lr € C™ Y([to,t1];Y), D¢ Lz € C((to,t1];Y), Mz € C((to,t1]; V), BbImOHSAIOTCS
yeaosus (1), (¢, Dt a(t), Di?x(t),. .., Dimx(t) € X npu Beex t € (to,t1] ¥ BBIIOJIHS-

ercst (2).
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Onpeznenenue (cm. [1]). Iycrs L, M € CI(X;Y). apa (L, M) € Hq (0o, a0), ecin

(i) cymecTByIOT TaAKHE 90 € (m/2,m)map = 0, aro upu Bcex A € Sg, g, BBIIOIHIETCA
prmoderne \* € pL(M);

(ii) npum mobbix 0 € (7/2,6p), a > ap cymecrsyer Takoe K = K(6,a) > 0, 4ro upu

f,a
neex A € Sp o max{|| Rk (M)l|zxy, | L& (M)l 2o} < sy
OGosnazum ker RY (M) := X°, ker LL(M) := )°. Yepes X' (V') oGosnamm

3aMBIKaHne 00pasa unRL (M) (lIIlLL (M)) B HOpME X ()), auepes Ly, (M) — cyKenue
oneparopa L (M) na DLk =D, NX* (Dyy,, := Dy NYF), k=0, 1. Onpenermm
(t —to) (t—to)™!

1 Y1+ + nym_h Uk == Di™* [i=,y(t), k=1,2,...,n.

y(t) = yo+

Teopema 1. Ilycmv 6anazxosv, npocmparcmea X u Y pePaekcueHvs, SblnoAHEHO
(L,M) € Hao(b,a0), L1 € LIXL YY) uau My € L(XL V), n € N, a1 < ay <

< ap, EKm—1 < a<<meN X — omkpumoe mmoocecmso 6 R x X,
N : X — imL, omobpasicenue Ll_lN € C(X; DL1_1M1) AOKAALHO AUNWULEBO MO Pa-

3066LM nepementoim, |2 [to, T] — YO-HmML npu nexomopom T > to, f € C([to, T]; V),
LT'Qf € Cllto, T D1y, ), Mo '(I = Q)f € O™ H([to, T]; X), yu € L[Dp -1y, ] npu
k=0,1,...,m—1, (to, L't — D{* My (I — Q) f(to), ..., LT Gn — DMy H(I —
Q)f(to)) € X. Toeda cywecmsyem edurncmeennoe pewerue 3adavu (1), (2) na om-
peaxe [to, t1] npu nexomopom t1 € (to, T).

Crucok aureparypbl

[1] ®emopos B. E., Pomanosa E. A., ITebym A. Anajurudeckue B CEKTOPE pa3periao-
II[FIe CeMEeNCTBa OMePATOPOB BBIPOXKIEHHBIX IBOJIIOIMOHHBIX YPABHEHUH JIPOOHOTO
nopsigka, Cub. srcyph. wucmol u npukaad. mamemamuru, 16, Ne 2 93-107 (2016).

O MmaremaTnyeckKumux MoaeJIdX C HeJIMHEeITHbIM
I'paHUYIHBIM YyCJIOBUEM

M. B. 3sepeea

BopoHexxckuii rocynapcteeHHblii yHuBepcuTeT, BopoHex, Poccus

M. N. KameHcknii
BopoHexxckuii rocynapcteeHHblii yHuBepcuTeT, BopoHex, Poccus

IIpoBeneno uccienoBanne Mozeneit gedopmanuii yupyrux cucreMm (cTpyHa, 6as-
Ka) C HeJWHEeHHBIM TPAHWUYHBIM YCJIOBHEM II07] BO3JeHCTBHEM BHEIIHEH HArPY3KH.
Takxoro poja ycjaoBHE BO3HUKAET 33 CUET HAJUINS OTPAHUYIUTE]sI HA TePEMEIeHUe
U3 COCTOSIHUsI PABHOBECHS OJHOTO M3 KOHIIOB paccMaTpuBaeMoil (pusmaeckoil cucre-
MBI. B 3aBUCHMOCTH OT MPUJIOXKEHHO# BHEITHEH CUJIbI COOTBETCTBYIOIIUI KOHET] WJIH
ocTaeTcst CBODOJHBIM, WJIM KAcaeTcsl TPAHUIHBIX TOYeK orpaHmdutess. OTKIOHEHWe
n3ydaeMoil (bU3NIECKOI CHCTEMBI OT TOJIOYKEHUsT PABHOBECHSI OIMCHIBAETCSI HHTEIPO-
nuddepeHImaIbHbBIM ypaBHeHneM ¢ nHTerpajoM CTHITbEca, IYTO MO3BOJISET YIUThI-
BaTh JIOKAJU30BAHHBIE B OTAEIBHBIX TOYKAX OCOOEHHOCTH (COCPEIOTOUYECHHDbIE CHJIBL,
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YIPyTHe OMOPHI) U IPOBOJATH MOTOUEUHBI aHAIN3 KaK PEIIeHUH, TaK 1 COOTHOIIIE-
uuit. COOTBETCTBYIONIEE YPABHEHUE SIBJISIETCS AHAJIOTOM yPaBHEHUs Diijiepa U BMeCTe
C YCJIOBUSIMU IOJTY9YEHO BapPUAIMOHHBIM METOJIOM U3 3391 O MUHUMU3AIUN SHEPre-
TUIECKOTO (DYHKIIMOHATIA.

YceraHOBIIEHBI HEOOXOAMMOE U JIOCTATOYHOE YCJIOBUSI 9KCTPEMYMa, JJIs PaccMaT-
PUBaEMbIX SHEPreTHIeCKNX (DYHKIIMOHAJIOB. JlOKa3aHBI TEOpEMbI CyIECTBOBAHUS U
€JIMHCTBEHHOCTHU PEIeHNH; MOy IeHbl (POPMYIIBI IPEJICTABICHNS PEIIEHUIT; UCCIIeI0-
BaHa 3aBUCUMOCTDL PEIIEHUH OT paszMepa OTPAHUYUTEJIs; pa3paboTaH ajJropuT™ Ha-
XOYKJICHUsI TPUOJINIKEHHBIX PEIeHUI.

Kpowme Toro, ucciieioBan psij Mojiesieil Kojgebanuii CTpyHHBIX CUCTEM B IIPEJIIOJIO-
JKEHWUH, 9TO OTPAHUYUTE/b MOYXKET JBUTATHCS B MEPIEHIUKYISIPHOM HAIPABICHUH K
IJIOCKOCTH, B KOTOPOH PACIIOJIOXKEHA HCceayeMast (PU3NTIECcKasi CHCTEMA B TOJIOKEHUN
paBHOBecus. it Takux 33489 JJOKA3aHbI TEOPEMbI CYIIIECTBOBAHUS U €IMHCTBEHHOCTH
pertiennii, mosrydeH aHajor dopmysbt Jamambepa.

Pabora BeinosiHena npu GpUHAHCOBOI mojIep:kke MUHUCTEPCTBA HAY KW U BBICIIIETO
obpazoBanus PO B paMKax BBIIOJHEHUS TOCYAPCTBEHHOIO 33JIaHus B chepe HAyKU
(momep rembr FZGF-2020-0009), POOU u HITHU B pamkax nayusoro npoexta Ne 20-
51-15003 HITHU-a.

Criucok aureparypbl

[1] Kamenskii M., Wen Ch.F., Zvereva M. On a variational problem for a model of
a Stieltjes string with a backlash at the end, Optimization. J. Math. Progr. Oper.
Research, 69, Ne 9, 1935-1959 (2020).

[2] Kamenskii M., Wen Ch.F., Liou Y. Ch., Zvereva M. On a hyperbolic equation on a
geometric graph with hysteresis type boundary conditions, Optimization. J. Math.
Progr. Oper. Research, 69, Ne 2, 283-304 (2020).

[3] 3eepesa M.B., Kamenckuit M. . Ilabpos C.A., Peno ge ®@urr II. Samaga o
JedopMaIusX Pa3pbIBHONW CTUITHECOBCKOW CTPYHBI ¢ HEJIUHEHHBIM T'DAHUIHBIM
yciosueMm, Beemu. Boponeotc. 2oc. yn-ma. Cep. @us. Mam., Ne 3, 76-94 (2020).

O HeKOTOpBIX Ba2KHbIX 3aJaYdaXx TeOpI/II/I
napabo/im4ecKnX ypaBHEeHU
K. A. Kannesa

Kasaxckuii Hay4Ho-uccnepoBaTenscknii Texnudecknii yuusepcentet nm. K. M. Catnaesa,
AnmaTbl, KazaxctaH

6. 6. Basapbaii

Kasaxckunii Hay4Ho-nccnegoBatensckuini Texinyeckuii yHuesepcuter um. K. . Catnaesa,
AnmaTbl, KasaxctaH

Zh. Dong

WNHctutyT ABTomaTuku, Akagemus Hayk nposuHuun LLlangonr, KnTaii

B mepBoit wactu ucciiesoBana TpexmepHas 3aada HaBbe—CTokca jyist cxKuMae-
MOT0 W HECZKIMAEMOTr0 TOTOKa KUJIKOCTU WK ra3a. [Ipenoxkena MeTonka uccie-
JIOBaHUS PEIIEeHUsT 3319 C UCIOJIb30BAHNEM KJIACCUIECKON Teopuu napadboInIecKnx
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ypaBHEHNil, 06eCIIeInBAIONIAs CYIECTBOBAHNE U €JIMHCTBEHHOCTD PEIIeHUs] yPABHEHUS
Hasre—Crokca B GeckoneuHOM mpocTpaHcTBe. st onpenenenns: cKaIsspHoil GpyHK-
MU PaCIpeie/IeHns] JABJICHUS TOJyIeH 3aKOH COXPAHEHUsI SHEPIUH, OIHOMEDPHBIM
caydaeM KOTOPOTO siBJisieTcsi ypaBHenue Bepuysau. Bo BTopoit wactu paccMoTpeHa
apyxdasnas 3agada Credana B IJI0CKONH KIUHOBUAHON obsactu. [TocTpoenue perie-
uue 3ajaun Credana B paccMaTpuBaeMoil 06JIACTH OCHOBAHO Ha, MCIIOJIH30BAHUN Pa-
Hee TIOCTPOEHHOTO0 ABTOPOM PEIIeHUs 3a/1a9M COMPSIYKEHN B IJIOCKOM yIJIe ¢ JTUHueH
pa3pbiBa KO3(hUIMenTa, BBIXOISINEr0 Ha HEPETYISPHYO rpanuity obsactu. /aHHbrit
TOJ/IX0/T 0DECTIEYNBAET TIOKA3ATEIHCTBO CYIIIECTBOBAHUS U €IMHCTBEHHOCTH JIBY MEPHOI
u jByxdaznoii 3a1a1n Credana u MO3BOJISET ONPEJIEIUTH TPAHUILY IBUKEHUST PA3/Ie-
Jla IBYX Cpejl.

Crnucok jaureparypsbl

[1] Kaliyeva K. A. Energy conversation law in the free atmosphere, Int.
J.  Engineering and Innovative Technology, 3, Ne 11, 50-61 (2014);
http://www.ijeit.com/archivedescription.php?id=31.

[2] Kaliyeva K. A., Kaliyev A. K. Existence and uniqueness of weak
solutions for the Navier—Stokes equations, IAENG Journal, World Congress
on Engineering and Computer science, London, UK, 02-04 July, 2014;
http://www.iaeng.org/publication/ WCE2014/WCE2014 pp1288-1293.pdf.

[3] Kaliyeva K.A. Energy conservation law for the turbulent motion in the free
atmosphere, B ¢6.: Symposium on Modeling and Simulation in Computer Sciences
and Engineering, 12th International Conference of Numerical Analysis and
Applied Mathematics ICNAAM. — Rhodes: AIP publishing.

[4] Kaliyeva K. Energy conservation law for the turbulent motion in the free
atmosphere: turbulent motion in the free atmosphere, B c6.: Handbook of
Research on Computational Simulation and Modeling in Engineering. — 2015,
C. 105-138; http://www.igi-global.com/book /handbook-research-computational-
simulation-modeling,/129612.

[6] Kaliyeva K. The two-phase Stefan problem for the heat equation, IAENG
Journal, Engineering and Computer science, San Francisco, 23-25 Oct. 2013;
http://www.iaeng.org/publication/ WCECS2013/WCECS2013 _pp868-873.pdf.

I'parngHble oOpaTHBbIE 331291 AJII CUHTYJISPHBIX
BO3MYIIeHUil oneparopa Jlammaca

B. E. KaHryxuH

Kazaxckunii HaumoHanbHbl yHusepcuteT nmerdn Anb-Papabu, Anmatel, Kasaxcran

B paborax [1-4] npuBeeHb! onucanusg KOPPEKTHO PA3PEIIUMbIX KPAEBbIX 33189 B
MIPOKOJIOTHIX 00JIACTSAX JJIsI orreparopa Jlamaaca B mape Ipou3BOJILHOIO UHUCIa Tepe-
MEHHBIX. YKa3aHa UX CBA3b C JIEJbTOO0OPA3HBIMIA BO3MYIIEHUsIMA onepaTopa Jlama-
ca—/Tupuxsie. TaM 2Ke IpUBEIEHBI TEOPEMbI O JIOKAJU3AIMK CIEKTPOB YKA3aHHBIX
KpaeBbIX 3aja4. B mokmajie 0yaeT o6CcyKIaThCs BOTPOC 00 OIHO3HATHOM BOCCTAHOB-
JIeHnU 00JIACTH OIpeJiesIeHns orepaTopa Jlarmmaca, BO3MYIIEHHOTO JI€bTO00PA3HBIMI
norerrmaiaMu. I1ocKoIbKy 06J1aCTh ONpeIeIeHIs 3aA€TCsd TPAHNIHBIMY YCJIOBUSIMI,
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0ob6Cy 2K TaeMble BOIIPOCHI OTHOCSITCS K 00paTHBIM 3a1adaM. B To ke Bpemst, njieHTudu-
Kalisl TPAHNYHBIX YCJIOBUI omepaTopa Jlamimaca mpou3BOATCs 0 HAOOPY CIEKTPOB
HEKOTOPBIX STAJOHHBIX 337a4. CxemMa BOCCTAHOBJICHUS TDAHUIHBIX YCIOBUI B CIydae
OJTHOMEPHBIX T DEPEHITNATBHBIX OIIEPATOPOB BBICIINX MOPSIIKOB 110 HADOPY CITEK-
TPOB STAJIOHHBIX 3a7a4 IpuBeeHa B pabore [5]. [IpesoxkenHas cxemMa BOCCTAHOBIIE-
HUsI TPAHUYIHBIX YCIOBUi B paboTe [5] azanTuposana Jyist OJJHO3HATHOTO OTIPe/TeIeHsT
TPAHWYHBIX YCJIOBHUi oneparopa Jlammaca ¢ geibToobpa3HbIMU BO3MYIIIEHUSIMUA.
Asrop 6b11 Iojepkan rpanTom AP 08855402 MOH PK.

Criucok aureparypbl
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budypkaiusa ApapoHoBa—Xornda B JOTUCTHYIECKOM
ypaBHEHHNM C 3ama3abIiBaHueM, auddys3ueit u ObICTPO
OCHMJLINPYIOIMUMI KO3 DUImeHTaMm1
C. A. KauieHko

SApocnasckuii rocynapcteeHHtblii yHusepcutet um. .. Jemugosa, Apocnasnb, Poccus

. 0. JlornHos

SApocnasckuii rocynapcteeHHblii yHusepcutet um. .1, Jemugosa, Apocnasnb, Poccus

Paccmorpeno BaxkHOe JIJIsT TPUJIOYKEHUI JIOTHCTHIECKOe yPaBHEHUE C 3alla3/ibiBa-
nueMm u nuddysueit

ou 0%y
Tl d(wt)ﬁ — r(wt)u(t — T(wt), x)[1 + u] (1)
C TPAHNYHLIME YCIOBHAMI
Qul _o, 2wl @)
ox|,_, = Ox w:1—7w Yla=1-

IMosnoxkurenbuble Kodddurmenter d(s), r(s), T(s), a rtakxke koaddumenr v(s)
[PEJIIONAraloTCst 27-TIEPUOJNIECKUME. B KauecTBe IPOCTPAHCTBA HAYAJIBHBIX yCJIIO-
suit g (1), (2) yaobno sui6paTs npocrpanctso W = Cl—maxsT(s), 0] x W3, Ipen-
TIOJIATAeTCsI, ITO BCe KOIPDUIMEHTH YPaBHEHHSI, a TaKKe KOIDDUIMEHTHI B TPAHII-
HBIX YCJIOBHSIX SIBJISIFOTCS OBICTPO OCIMIUINPYOIIMI QYHKIMsAMA BpeMeru. ITocTpo-
€HO yCPeJIHEHHOE YPaBHEHHE U PACCMOTPEH BOIIPOC O CBSI3U MEXKJIY €rO PEINCHUSIME 1
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peIeHusIMEI UCXOTHOTO ypaBHeHus. Ocob0 OTMETHM, UTO OCIILIAINN KO3(hMDUIIEHTA
zamnasapiBanus 1, HAIpUMED, MOTYT IPUBOJINTH K MOSBICHUI PA3HOOOPA3HBIX KJIaC-
COB HEJIMHEWHBIX yCpeaHeHHbIX ypaBHeHui. ChopMyInpoBaH pe3yabTaT 00 ycToldn-
BOCTH DpeIleHul U u3ydeHa 3ajiada O JIOKAJHHOU JMHAMUKE B KPUTHIECKOM CJIydae.
[Ipemoken ajaropuT™M MOCTPOEHUsI ACUMIITOTUKH PEIEeHUl U aJIrOPUTM HUCCJIeI0Ba-
HUSI YyCTOWIUBOCTU. BayKHO OTMETHTBH, YTO COOTBETCTBYIONIUII AJITOPUTM COJIEPIKUT
KaK PeryJsipHble, TaK W MOTPAHCJIONHBIE cocTaBisomue. [IpuBeeHsl coepKaTeb-
HbIE IPUMEDPHI.

Pabora Beimosinena npu puHAHCOBOI TOIIEp2KKE IpaHTa Poccriickoro Hay9IHOTO
donna, npoext Ne 21-71-30011.

O pemeHnsSIX HEJMHENHBIX 3JLIANTUYECKIX
ypaBHeHUii ¢ Li-JaHHbIMIA B HEOTPAHNMYEHHbIX
obJracTax

J1. M. KoxxeBHUKoBa
CrepanTtamakckunii ounman BawKnpckoro rocynapCTBEHHOrO YHUBEPCUTETA,
Crepautamak, Poccusi

A.Tl. KawHnkosa
Crepnutamakckuii ounnan Balwknpckoro rocyaapcTBeHHOro YHUBEpPCUTETA,
Crepautamak, Poccus

B neorpanuuennoit obimacru ) C R” = {x = (x1,...,2,)}, n > 2, paccmarpusa-
etcs 3a1a4a Jupuxiie

—diva(x,u, Vu) + M'(x,u) + b(x,u, Vu) = f, fe€ Li(Q), xeQ, (1)

b0 0. (2)
Brech bynxnmm a(x, so,8) = (a1(x, $0,8), - .., an(X, 50,8)) : QxR — R” b(x, s0,5) :
Q x R*™! — R umeror poct 1o (sg,s), onpesensembrii obobmiennoit N-dynkimeit
M (x, z), KoTOpast He 00A3aHA YOBJIETBOPATH Ag-yCIOBHIO.

B npocrpancrBax Mysuiaka—OpJiuya Jjisi ypaBHEHUs

—diva(x,Vu) = f, feLi(), xe€Q, (3)

C IPaHUYHBIM ycsioBueM (2) B orpanudenHoii obiactu §) B padore [1] rokazaHo cyie-
CTBOBAaHNE PEHOPMAJIN30BAHHOTO PEIIEHs!, a B paboTe [2] ycTaHOBJIEHBI CyIIeCTBOBA-
HPE U €JIMHCTBEHHOCTD SHTPONHITHOTO ¥ PEHOPMAJIN30BAHHOTO PEIIEHNH, MOKA3AHA MX
9KBHBAJIEHTHOCTD.

Apropamu B npocrpancTsax Mysuiaka—Opin4a B pabote [3] mokaszaHo cyriecTso-
BaHUE SHTPONUIHOIO PEIIEHHs U yCTAHOBJICHO, YTO OHO SIBJIAETCSI PEHOPMAJIN30BAH-
HBIM pertierneM 3aa4u (1), (2) B Ipon3BOJIBHON (B TOM YHCIIE U HEOIPAHUIEHHOMN) 00-
sactu €, yI0BJIETBOPAIONIE cerMeHTHOMY cBoiicTBY. Kpome Toro, /s ypasrnenns (1)
c a(x, so,8) = a(x,s), b(x, s0,8) = b(X, So) MOIYIEHBI HEKOTOPbIE CBOHCTBA U JI0OKa3aHa
€/IMHCTBEHHOCTh YHTPOIMAHBIX U PEHOPMAIM30BAHHBIX perenuil sagaau Jupuxie, a
TAKKe YCTAHOBJICHA UX YKBUBAJIEHTHOCTb.
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O paspemmumoctu obobmieHHol 3aga4du Heiimana
JJISL SJIJINOTUIECKOTO YPABHEHUsI BHICOKOT'O MOPSIKA
B OeckoHedHOIT 0bJy1acT
b. 1. KowaHoB

Kazsaxckunit HaumoHanbHbil yHusepcnteT nmM. Anb-Papabun, MexayHapogHbiii
yHuBepcuTeT nHdopMaunoHHbIx TexHonornii, Anmatel, Kasaxcran

A.Tl. ConpgaTtoB
Boluncnntenbhblii uentp um. A. A. JopoaHuubiva ®UL Y PAH, Mockea, Poccus

B obnactn D Ha mI0CKOCTH, OTpaHUYEHHONH TMTPOCTBIM IIAJIKUM KOHTypoM I, pac-
CMOTPHM 3JUIANITHIECKOE YpaBHEHNE 2[-T0 MopsiiKa

21

21 k
;w#%— Z ark(z)aiu:f(z), z=x+1iy € D, (1)

2l—r Hyyr k—r Q7
xF—T0
% 0<r<k<2l—1 9 Y

C TIOCTOSTHHBIME cTapiuMu Koddduruentamu a, € R.

Ucxonsg u3 mabopa 1 = ky < ... < k; < 2] HaTypaJpHBIX 4nces, 00OOIIeHHAS
zajiada Hefimana Jjis 9TOr0 ypaBHEHUsI OIPEJIETISAETCS KPACBBIMU YCJIOBUSMU
ak?jflu )
W :fJ? ]:1,...7l, (2)

riae n = ni + ing O3HAYAET eIUHUYHYIO BHEIIHIOK HOPMAJIb.

IMocranoBka xoukpernoit 3amauu (1), (2) mpu kji1 — k; = 1 mna momurapmo-
HUYeCcKoro ypasaenus BocxoauT K A.B. Bumazge [1], rme upu k1 > 2 ona nassana
06001eHHOM 3a1a4eit Heifimana. 910 Ha3BaHMe B JAJIbHENIIEM COXPaHIEM U JIJIs IIPO-
U3BOJIBHOTO Habopa IoKasareseil k;, BBOAA 11 3a7a491 0003HAYCHNE N. Cumson Ny
COXpaHsIeM JIJIsl 3aJ1a91, KOr/a Bee Mya e KodhduruenTs! a.;, B (1) paBHbI HyITHO.

B xoneunoit oguocssasHoit obaactu D 3amada N moapobHo uccienoBagach B pa-
6orax [2,3]. B pabote [3] sTa 3amaua msywanace zamaga B xknacce C20H(D) = {u €
C*(D)nC*~4*(D), L,uc C*D)}.

O6o3Haunm uvepes v, 1 < k < m, Bce pa3/iMuHble KODHU B BEPXHEH TOJIYILIIOCKO-
CTH XapaKTEPUCTUIECKOI'O MHOIOUJIEHA

m — \lp
_aQZH (z — k) Hk:l(z—vk) k
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TaK ITO CyMMa KpaTHocTeit [y + ...+ l,, 3Tux KopHeit paBua [.
Beemem npobuo-mHetHBIE TI0 2 QyHKIUN
—eo + ev .
wle,v) = ——, 1<j <, 3)
e1 + eV
IJle 3aBUCUMOCTH €JIMHIYHOTO KAaCATEJLHOTO BEKTOpa € = e1 + teg K KOHTYpy ' or
HOPMAJILHOT'O BEKTOPa € = e1 + ieg = (N1 + ing). 34ech HaI0 MOHUMATD, UTO V = Vj,
1<j<l.

Ucexons u3 I-sexrop-dyukimn g(¢) = (g1(€), ..., g1(¢)), anamuTnaeckoit B 0KpecT-
HOCTH TO4€EK (1, ..., m, BBeJAeM Oyounyio | X [— MaTpuiry
WQ(CIPH»C’H’L):(WQ(Cl)P"?WQ(Cm))? (4)

rae marpuna W ((r) € CH¥l cocrapiieHa I3 BEKTOPOB-CTOJIONOB

96,9/ gD (Go)

(I —1)

IIycTs obaacTs D Geckonedna u orpanmaena KouTypoM I' € C2hY | csasnble KoMIIO-
HeHTBI KoToporo obosuaunm [y, ..., IT',. Cuenysa [4], BBemem npocrpancrso Lesbiepa
C{(D,0), A € R, bynxmuii co crenennbiv nosesennem O(|z|*) na Geckoneunoctn.
Boustee Touno, mpu A = 0 OHO COCTOUT U3 OI'PAHUYEHHBIX DYHKIUI (0, JJIsT KOTOPBIX
¥(2) = |z|*p(2) ynosaersopser ycaosuio Lesbaepa ¢ nokazaresiem . OTHOCUTENHHO

HOPMBI
[ (21) — ¥(22)]
ol = sup (=) + sup L=t
ze€D z1#22 |Z1 - 22|

9TO MPOCTPAHCTBO OAHAXOBO, IPUYEM OHO SIBJIIETCsS DAHAXOBO# ajaredpoit mo yMHO-
xKeHuio. B obmem ciyuae npoussosbHoe A Ganaxoso npocrpancrso C4 (D, oo) ompe-
nemM Kak Kitace dbyaKmmit o, s kotopbix (1 + |2]) " p(2) € Cf (D, 00), crabxen-
bl nepenecennoit Hopmoit. CoorBercrByomue 6anaxosbl mpocrpancrsa Cy " (D, o)
nuddepeHIpyeMbIx OYHKIUI OIPEIeNM UHIAYKTUBHO yCJIOBUSIME

Op Oyp

n n—1,u /7y Y Y
QDGC(D)HC)\ (D,OO), 895’83/

e CY- (D, ). (5)
Onn sABAI0TCH 6GAHAXOBBIME OTHOCHTEIHHO COOTBETCTBYIONIEH HOPMBI.

Tlockousibky B masbHelinem beckoHedHast 001acThb DD (buKcupoBaHa, MPOCTPAHCTBA
CY*(D, o0) Berony obosnauaem xkpatko Cy°*. B Gosee obmelt cHTyarum KOHETHOTO
MHOYKECTBA OCOOBIX TOUEK OHU OBLIN JIETAJIbHO U3ydeHbl B [4].

Bamagy N paccMOTpuUM B KJacce C’fl’“ , —1 < A <0, dyHsKIHil, nCIE3AIONUX HA
GeckoHedIHOCTH. JlJIsl Hee CIpaBe/InB CJIeIYIONINi OCHOBHOI Pe3yJIbTarT.

Teopema 1. ITycmo Geckonewnas obracms D ozparuvena xonmypom I' kaacca C?HY
u < v <1, cocmoswum u3 xomnowewm Ly, ... [y, macdwue xoapduyuernmou ypas-
nenus (1) ydosaemeopsrom mpebosaruio

" ) _ "
ark € C_o1_o(D,00) = Ue»0Cp o, (6)
U 6blNOAHEHO YCAOBUE

det Wylw(e,11),...,w(e,vm)] #0, e€T, (7)
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20e T osnauaem edunuuniro oxpystcrocms. Tozda sadawa N @pedeorvmosa 6 waacce
21 y
Cit, =1 <X <0, u ee underc daemces Popmynot

@ = 2(n+1)[aeo+22i<j Lilj] — 1(21 - 1). (8)

al,
Jlemma. 3adavu N u Ny 6 kaacce CiF, —1 < X < 0, dipedzorvmoso sxsusarermivol
U uT uHderco, coenadarom.

Asrops! 6bLn o IepxKkanbl rpanrom AP 08857604 MOH PK.
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(2016), 1-179.

OO0 yTOYHEHNN MEeTOaA CIJIANH-KOJIJIOKAINI penieHus
HEKOTOPBIX MHTErpPaJIbHbIX yYpPaBHEHUII

E. K. Kynukos

CankTr-lNeTtepbyprekunin rocygapcreertsiii yHusepcntet, Cankt-letepbypr, Poccus

A.A. Makapos

Cankr-lletepbyprckunii rocygapcreentbiii yHusepcutet, Cavkr-letepbypr, Poccus

N3BecTHO, ITO METO/bI, OCHOBAHHBIE HAa KBA3MUHTEPIIOJIAINHN, YCIEIIHO ITpUMe-
HAIOTCS B 3a/1avaX MPUOIMKEHUs PereHnit MHTerpaJbHbIX ypaBuennit. Hampumep, B
paborax [1,2] 6b110 MOKA3aHO, UTO 3aMEHA PEIIEeHns] THTErPAIbHOrO ypasHeHns Opej-
roJIbMa JIMHEHHO# KoMOuHaImeil B-cuaaiiHoB, KO3(MMOUIUEHTHI TPU KOTOPHIX BBIUUC-
JISTFOTCS TP TIOMOIIY KBa3UMHTEPIIONATINN (DYHKIINIA, BXOISIINX B yPaBHEHUE, TO3BO-
JISIET TOJIyYaTh JIOCTATOYHO TOYHbBIE MPUOJIMKEHNST TPU UCIOIb30BAHUN PA3TMIHBIX
TIOIXOJIOB K pelennio: Metojia [anépkuHa, Meroja Kantoposuda, MeTo1a UTepaIimit
Croana, a Takzke 6oJiee TTO3THUX O0DOOIEHUIA.

Ksasunnarepnossiimonnabe (OyHKITMOHAIBI OBLIN IOCTPOEHBI JJIsI PA3IUIHBIX KJIac-
coB citaiinos. B pabore [3] onu GbLIM 1MOJIy9YeHBl aBTOPAMU JOKJIAA B OOIIEM BUe
U JjIss MUHUMAJIBHBIX CIUTAfiHOB. Takue CILTaifHbI MOJIyYIalOTCA U3 AlMPOKCHMAIIOH-
HBIX COOTHONICHUI C MCIOJIb30BAHUEM IIOJIHOI IENOYKU BEKTOPOB U IOPOXKJIAIONIei
BEKTOP-DYHKIMN, & TaKKe 00JIaIal0T MUHIMAILHBIM HocuTeseM (cum. [4]). Ha mporsi-
KEHUU TOCTETHUX JTEeCATUIETAN MIHIMAJIbHBIE CIIAIHBI 3aPEKOMEHI0BAIM celst Kak
XOPOIIHI HHCTPYMEHT AIMTPOKCUMAIIAN.
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B mamHOM JTOKJIajIe pacCMATPUBAETCS METOJ, CILIAWH-KOJIIOKAIMI ¢ UTepaIisiMu
Croana 1y WHTErpabHbIX ypaBHeHuit @pesarosbyma u Boabreppsl, B KOTOPOM TIpU-
OJIMKEHHOE PeIleHne CTPOUTCS KaK JIMHEeHHAS KOMOMHAIINST MUHUMAJIbHBIX CILIANHOB,
a B Ka4ecTBe KoM UINEHTOB PACCMATPUBAIOTCS 3HAUEHUS YIIOMSHY THIX paHnee hyHK-
IHOHAJIOB.

Uccnenosanue BuInoineno mpu dunamncoBoil moauep:xke POOPU B pamkax Hayd-

moro mpoekTta Ne 20-31-90095.
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MaTreMmaTndecKoe MOAeJINPOBAHNE BPAallleHMUs
paciuiaBa IIoJ BO3JIEfiCTBUEM HMMILYJIbCHBIX HArPy30K

I.T. JlazapeBa

Poccniicknii ynusepcuteT gpyxbbl Hapogos, Mockea, Poccus

B nokiane npezicraBiena Mozesib pacupeiesieHns TOKa B 00pasie BoJibdpama u
HCIIAPsIEMOM BEI[ECTBE NP HArPEBE MOBEPXHOCTHU JIEKTPOHHBIM IIydkoM. Mosesnsb oc-
HOBaHA Ha PEIIeHNN YPaBHEHWI 3JIeKTPOJMHAMUKE 1 JiByxdasnoii 3ama4qn Credana
JUIs pacdeTa TeMIIepaTyphbl B 00JIaCTH 00pa3lia B IUJINHAPUIECKON CHCTEeMe KOOD/IH-
nat. Tok paccMaTpuBaeTcs KaK BO3MOYKHBIN HCTOYHUK BPAIECHUS BEIIECTBA, KOTOPBIi
HAOJTIOIAeTCsT B 9KCIIepUMeHTe. Pe3yibTaThl TPOBEIEHHOTO MOIEINPOBAHNS TTOKA3AIH,
YTO y4eT TEPMOTOKOB B I1lapax BoJibdpama HaJ| INIACTUHKON HEOOXOIUM JJIsl MOJIyde-
HUs YCKOPEHUs, CIOCOOHOTO MHUITMHUPOBATH HAOJII0/[aeMOe B SKCIIEPUMEHTE BPAIEHNE
paciuiasa. [TapamMeTpbl MO/ B3ATHI U3 9KCIIEPUMEHTOB Ha cTeH ie Beam of Electrons
for materials Test Applications (BETA), coznannoro 8 1P CO PAH. Pa6ora BbI-
oJTHeHa, pu puHAHCOBOI moiepkke Munoopuayku PO B pamMkax rocy1apcTBEHHOTO
sajanust (Homep rembl FSSF-2020-0018).
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OO0 orleHKe Pe30JIbBEHTHI OJHOI'O OIepaTopa,
MOPOXKAeHHOro nuddepeHnnaibHbBIM yYPaBHEHNEM
BTOPOT'O MOPSAJIKA C HEJOKAJbHBIMU YCJIOBUSMHU

N. ®. JlexxeHnHa
BopoHnexckuii rocysapcteeHHblii yHusepcuTeT, BopoHex, Poccus

PaccmaTpuBaercsa 3agaqda

x

w(0) =0, [u(z)dz=0.
0

W+ a(w)u/ —\u = f’ HAS (071)’
: 0

3nech a —HenpepwiBHas dbyHKIusa Ha orpeske [0, 1]. OyHKIMS f OPUHAIIEKAT TIPO-

crpanctBy Cy, [0, 1] —mpocrpancTBy HenpepsiBHbIX Ha nHTepBase (0,1) dyaxmmit, mst

KOTOPBIX CYIIECTBYIOT KOHEUHBIE IIPEJIEJIb lin%J x® f(x), lim1 (I —2)*f(x). Bmecnp 1 <
T— T—

a < 2. Hopma B ipoctpancree Cy, [0, 1] 3amaercs dopmysioit

[fllo = sup (1 —2)*[f(x)].

<x<l1

Bazmaga (1) nopoxpaer oneparop A : D(A) C Cy[0,1] — C,[0, 1],

Au=u"+ _a(x) u,’
T

¢ obmactbio onpenenenus D(A) = {u € C[0,1] N C*(0,1) N C%(0,1), u” € C4[0,1],
1

u(0) =0, [u(z)dx = 0}.
0

Haiinens! ycioBust Ha GYHKIMO a(x), IPH BBIIOJIHEHAN KOTOPBIX JJist JII0GOI0 €
[0, Z) cymectyer Takoe r > 0, uto MuoxkectBo X = {A € C1 : |argA| < S+4¢, |A| =}
JIEXKWUT B PErYJISIPHOM MHOYKECTBe orreparopa A u jist Bcex A € Y CIpaBejInBa OIeHKA

C

A= 2D, < =.
¢ )l o

Banava (1) upu sroM misg Bcex A € ¥ UMeeT eAUHCTBEHHOE DEIleHue, IIPUHAIJIe-
kamee D(A).
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AHaau3 CTPYKTYyp
dbyHKInoHaJIbHO- AN hepeHITnaabHBIX YPABHEHUIA
HEJIMHEWHOW ONTuKN

B. A. JlykbsiHeHko

Kpbimckuii dbenepanbHeiii yHusepcutet um. B. W. Bepraackoro, Cumdeponons, Poccus

Paccmarpusatorest mojenu popmupoBanust (ha30BbIX TPOCTPAHCTBEHHBIX CTPYK-
TYP, B YACTHOCTH, JIJIsl MOJIEJIM KOJIBIIEBOT'O PE30OHATOPA, COIEPIKAIIErO CJION HeJInHel-
HOlt cpenpr [1]. @yHKINOHATBHO-TUMbEPEHITNATBHBIE YDABHEHNS, COMEPKAIIAE OTle-
pATOpBI TPeobpa30BaHusl IIPOCTPAHCTBEHHBIX KOOP/IMHAT, PACCMATPUBAJINCH HA TEO-
PETUYIECKOM U IKCIIEPUMEHTAIBHOM ypoBHAX MHOorumu kosurekrusamu (E.II. Benamn,
E. M. Bapdosomees, B. FO. Usanos, C. A. Kamenko, A. A. Kopuyra, A. H. Kynukos,
J. A. Kynukos, B. A. Jlykssauenko, O. B. JIsikosa, A. B. Mypasnuk, A.B. Pasrynun,
JI. E. Poccoscekuit, A.JI. Ckybauesckuii, FO. A. Xazosa u ap.).

Bazosoii siBiisiercst MoJiesib (¢ KPaeBbIMU U HAYAJIbHBIMU YCIOBHUSIMH)

Tour +u = DAu+ K |QA(w,t)\2 , = €R,
At +tr) = (1= B2 A (@) + Ke'#oeap(LA) { A(w, et @0 ],

0A(z, z,t)

z

—2ikg = AA(z,2,t), A(z,t) = A(z,z =0,t),

rie 79, D, K, R, o, L, ko — mapamerpsl ontiuueckoit cucremsr; A;, () — aMmmumuryna
BXOJIHOI CBETOBOM BOJIHBL;, () — oIepaTop Ipeodpa3oBaHus IPOCTPAHCTBEHHBIX IIepe-
MeHHBIX. /s cranmyoHapHbIX pernennii u = ug, A = Ag, Ajyn = Ains IMEIOT MECTO
COOTHOIIICHUS

us = K|As]> = (1 — R)k [1 - 2Rcos (us+¢0)+R2]’1, k= Kly, Iy = |Ams|®,
Ay = (1 = Reiust20)) ™ T RA,,,.

st muHEeapU30BaHHOl CUCTEMBI B OKPECTHOCTH (U, Ag, Ains) HaliIeHBI COBCTBEH-
Hble 3HAYEHUS U COOCTBEHHBbIE (PYHKIINU, IOJIYUEHbI YCIOBUS YCTONYNBOCTH, HAYAIb-
HO-KpaeBasl 3a/iava IpeJICTaBIeHa B BUJIe WHTETPAJHHBIX ypaBHeHUH. [T qacTHBIX
CJIyJaeB MOCTPOEHBI AaCUMITOTHIECKHUE TTPEJICTABIEHUS JJIsT PETIeHUH.

Jannas pabora IpoJosKaeT UCCIeJ0BaHUs, IPEJICTABICHHbIE B paboTax [2—4].

Crucok aureparypbl

[1] Usanos B.IO., sanosa 1.B. ®a30Bbie CTPYKTYPHI B HEJIMHEHHOM KOJIBIIEBOM
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[2] Kopruyra A. A., Jlykbsrerko B. A. @yukimonanabao-muddepeHmaabHbIe ypaBHe-
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tions with transformation of spatial variables, Lobachevskii J. Math., 42, 911-930
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dyHKIMOHAIBHO-TN(OEPEHITNAIBHOIO YpaBHEHUsT Tapabomiaeckoro tuma, /3e.
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O cymiecTBoBaHUM W €JIMHCTBEHHOCTH
PEeHOPMAJIN30BAHHOTO PEeIleHus JAJis JIINITIIEeCKOTO
ypaBHEeHUsI C MEPO3HAYHLIM MOTEHI[NAJIOM

@®. X. MykmunHoB
NuctutyT matemaTtuku ¢ BLL YOULL PAH, Yda, Poccus

Ha xommakTHOM MHOTOOOpa3uu M ¢ KpaeM paccMaTpUBaeTCs 3a1a9a
—divg(a(z,u,du)) + Au+ Ku=f, ulom =0; f € Li(M). (1)

Omneparop Ku : H;}(,)(M) — (H;}(,)(M))* kommnakrer, Au = —divy(FV,u), roe Bex-
TopHoe nojie F'Vg u B JTOKaJILHON cHCTeMe KOOPAMHAT MMeeT BbIparKeHHe Fikgij Ugj
Oynknpn FF(r) npunagexar L joc(M), 1 npu mobom x € M snementhr FF(x)
3a/1a10T HEOTPHUIATEILHO OIPEJIEJICHHYIO MaTPHILY.

MogemsabivM mpuMepom oriepatopa K- ssasercs onepatop K (u) = plul9™ u, rae
1 — Mepa Panona.

Bekropuoe nosie a upu r € R yz0BIeTBOPSET YCAOBUAM OrPAHMYEHHOCTH, MOHO-
ToOHHOCTH 1IpA y # 2z (a(x,r,y) — a(z,r, 2),y — z) > 0, KOIPUIUTHUBHOCTH

(a(z,r,y),y) = 200|y[P™® — G(z), tme G(z)e Li(M), y,zeTiM, zeM.

[Ipocrpancrso By,(.) (M) — nonomenune D(M) 1o ropme

ullpey,a = Nullpya + v (Au, u).
IMosnoxum Ty (r) = max(—k, min(r, k)).

Onpenenenne 1. Msmepumas DyHKIUsS U HA3BIBAETCS PEHOPMAJM30BAHHBIM PE-
menvem 3agaqan upuxie (1), ecau oma ymosserBopsier coornomtenusm: T (u) €
B,y (M) mpu Beex k > 0;

k—o0
M k<] u|<k+1

lim / (a(z,u, du),du)dv = 0;

upu Beex € € Lipg(R), v € D(M) BBIIOIHEHO PaBEHCTBO

/(a(% u, du), d(v§(u)))dv + (Au + Ku, v§(u)) = (f, v§(u)). (2)

M

IIycrs cymecTByfor Takoe anciao A > 1, aro

(Au+ Ku,u) + do / |Vgu\§($)du >0, u € Byy (M), (3)
M

pn |[ul|p),1 = A.

Teopema 1. ITycmo svinoanenvt yeaosus na a, Fy K u (3). Toeda cywecmeyem pe-
Hopmasusosannoe pewenue 3adavu (1).

[Ipu HEKOTOPBIX JIOTIOJHUTENBHBIX YCIOBUAX YCTAHOBJIEHA €/IMHCTBEHHOCTH PEHOP-
MaJII30BAHHOI'O PEIIeHU].
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Crnucok jaureparypsbl

[1] Vildanova V.F., Mukminov F. Kh. Perturbations of nonlinear elliptic operators by
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DddekTnBHBIE KBa3UKJIACCUIECKNE aCUMIITOTUKNI

B. E. HazalikuHckunii
NuctutyT npobnem mexanuku um. A. FHO. Nwnunckoro PAH, Mockea, Poccuns

Kanonuueckuii oneparop, cozpanubiii B. I1. Macaoseiv [1] B 1965 1., siBagercs oj-
HUM U3 MOIIHEHIINX CPEJICTB IIOCTPOEHUS II00AJILHBIX KBA3UKJIACCUIECKUX aCUMIITO-
tukK. OH OCHOBaH H& IeOMeTPUIECKOM 00'bEKTE — JIAIPaH>KEBOM MHOTo0Opasuu A B a-
30BOM TMIPOCTPAHCTBE R?ﬁp)' Kanonmyecknit oneparop meiictByer Ha riagkue QyHK-
1 Ha A ¥ IepeBOIUT UX B OBICTPOOCIUIIITUPYIONIHE (DYHKINH HA KOH(DUTYPAITHOHHOM
npocrpancTtse R?, 3aBucsimue oT Masoro napaverpa h > 0. B npakrnuecknx pacue-
Tax BaXKHO, UTOOBI aCUMIITOTHKA ObLIa 3(PpHEKTUBHOM, T.€. MO3BOJIIA UCCIEI0BATH
3a/1a9y JIOCTATOYHO OBICTPO U C IOCTATOYHO CKPOMHBIMHU BBIYUCINTEIHHBIMH 3aTPATA~
mu. ITousiTne 3¢hdeKTUBHOCTH 3aBUCUT OT UMEIOIITUXCS BBIYNACINUTEIBHBIX CPEJICTB U
CYIIECTBEHHO U3MEHUJIOCH C TOSBJIEHUEM CUCTEM TEeXHWIEeCKUX Bbraucjenuit Wolfram
Mathematica, MatLab n uM moao0HBIX, TPEIOCTABISIONINX TPUHIINITHAJIHLHO HOBBIE
BO3MOXKHOCTHU OII€PATHBHON peajM3allii U BU3yasju3aluu Bbruuciennii. Kiraccude-
CKOE OIIpejieJIeHre KAHOHIYECKOT0 OIIEPATOPa He BCET/Ia YAOBJIETBOPSET TPEOOBAHUIM
3¢ HEKTUBHOCTH, OTYACTU IIOTOMY, UTO HCIIOJIb3yeMble UM JIOKAJbHbIE KOODIUHATHI
Ha JIarPaHKEBOM MHOTOOOpa3Wu alpuopy HUKAK HE CBSI3aHBI C PENMaeMoil 3ajadeil.
B moxmame nan 0630p cOBpeMeHHBIX Bepcuil m MoauduKanuii KAHOHUIECKOTO OITe-
paTopa, MO3BOJISIONAX CTPOUTH M EKTUBHBIE acUMITOTHKE. K cOoOTBETCTBYyOMUM
KOHCTPYKIMSAM OTHOCSITCS:

® HOBBbIe (DOPMYIIBI, ITO3BOJIAIONINE 3AIUCATH KAHOHUYECKUII OIEPATOpP B IPOU3-
BOJIBHBIX KOODJIMHATAX HA JIATPAHKEBOM MHOT000DA3nM;

® IIpeJICTaBJIeHNsI KAHOHUYECKOT'O OIIEPATOPA B OKPECTHOCTH OOIIUX KAYCTUK B BH-
ne creruanbabix dyakmmit (Diipu, Ilupcw u 1p.) CI0KHOTO apryMeHTa;

® B 33/[aYaxX C JIOKAJIM30BAHHBIMHU HAYAJIHHBIMHU JTAHHBIME — O00DOIIEHNsT KAHOHU-
YECKOro OIIEPATOpa, IIO3BOJISAIONINE UCCIEI0BATh Caydan, Korja 3ddeKTuBHbIE
raMuJIbTOHUAHB! (U, KaK CJIeJCTBHE, JIArPAHXKEBbI MHOI00Opa3usi) UMEIOT 0CO-
GEHHOCTD CHenua bHOro Buja upu p = 0 (CIoga OTHOCATCS, HAIIPUMED, BOJIHOBOE
ypaBHEHHUe, CUCTeMBI, runepbosimaeckue o IlerpoBckomy, nceBnoand depenim-
aJIbHOE yYpaBHEHUE, ONKCHIBAIOIIEe BOJIHBI Ha BOJE B JINHEAPU30BAHHOM IIPHOJIN-
JKEHUW C yIeTOM JIUCTIEPCUHA U T. IT.).

JlokJiaji OCHOBaH Ha pe3ysbTaTax MHOrojerHeil coBmecTHO paborsr C. FO. 106-
poxorosa, A. 1. Iladapesuya u aBropa, KOTOPbIE B OCHOBHOM O6OOIIEHBI B [2—4].

Crucok aureparypbl
[1] Macsnos B.II. Teopust Bo3MyIeHunit u acummnrondeckue Meropl. — M.: Wzn-Bo

MT'Y, 1965.
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Io6poxoros C. HO., Hazaiikunckuii B. E., [ITadapesuu A. 1. HoBble unTerpaib-
HbIE MPEJICTaBJIEHNs KAHOHUIECKOro oneparopa MacioBa B 0cobbix kaprax, Ha3e.
PAH. Cep. mam., 81, Ne 2, 53-96 (2017).

Io6poxoros C. }0., Hazalikunckuii B. E. Jlarpan»keBsl MHOrooOpasusi u 3¢ dex-
TUBHBIE (DOPMYJIBI JIJIsT KOPDOTKOBOJIHOBBIX ACUMITOTUK B OKPECTHOCTH TOYKHU BO3-
Bpata Kaycruku, Mam. samemxu, 108, Ne 3, 334-359 (2020).

Hobpoxoros C. 0., Hazaiikunckuit B.E., ITladapesua A.M. Ddderrusnbie
ACUMIITOTUKY peleHnii 3amaun Kommm ¢ JIOKAJIM30BaHHBIMA HAYATbHBIME JIAH-
HBIMU JIJIsl JINTHEHHBIX cucTeM auddepeHnuaaIbHbIX U IceBI0anddepeHInaIbHbIX
ypasHeHuit, Yen. mam. nayx, 76, Ne 5, 3-80 (2021).

HenuHelinbie BOJIHBI M COJIMTOHBI

C.M. Hosnkos
MatemaTtuyeckuii nHctutyt um. B. A. Creknosa PAH, Mocksa, Poccus

Byner mam 0630p nepuogmyecknx mpobJieM HEJTUHEHHBIX BOJH U COJTUTOHOB M WX
3b C KBAHTOBOII MEXaHUKO.

Cnucok jaureparyphbl
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Iy6posun B. A., Marsees B. B., Hosukos C. II. Hesuneiinbie ypaBHeHusT THIIA
Kopresera—me @puza, KOHETHOZ0HHDIE JTUHEHHBIE OTIEPATOPHI U A0€IEBBI MHOTO-
obpazus, Yen. mam. wayk, 31, Ne 1, 55-136 (1976); aurs. mep.: Dubrovin B. A.,
Matveev V. B., Novikov S. P. “Non-linear equations of Korteweg—de Vries type,
finite-zone linear operators, and Abelian varieties, Russ. Math. Surv., 31, Ne 1,
59-146 (1976).

Kpuuaesep 1. M., Hosukog C. I1. T'ojomopdHBIe pacciioeHust HaT ajaredpandecKu-
MU KPUBBIMU U HeJIMHEHHbIE ypaBHenus, Yen. mam. nayx, 35, Ne 6, 47-68 (1980);
anar. mep.: Krichever I. M., Novikov S. P. Holomorphic bundles over algebraic
curves and non-linear equations, Russ. Math. Surv., 35, Ne 6, 53-79 (1980).
Iy6posun B. A., HoBukos C. II. 'mapoaunamuka cyiabo jgedopMUpoBaHHBIX CO-
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Yen. mam. nayx, 44, Ne 6, 29-98 (1989); anru. nep.: Dubrovin B. A., Novikov S. P.
Hydrodynamics of weakly deformed soliton lattices. Differential geometry and
Hamiltonian theory, Russ. Math. Surv., 44, Ne 6, 35-124 (1989).
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O HeyCTOWYMBBIX COCTOSHUSX PaBHOBECHUS JABYyMEPHO
cucrtembl bpoyaBesia

E. B. Pagkesuny
MockoBcknii rocygapcteenHblii ynusepcutet um. M. B. JlTomoHocosa, Mockea, Poccus

O.A. Bacunbesa
MockoBcknii rocygapcteenHblii yHusepcuteT um. M. B. JlTomoHocosa, Mockea, Poccus

M. 3axapyeHko
MockoBcknii rocyaapcTeeHHblii yHuBepcutet um. M. B. Jlomonocosa, Mockea, Poccus

Kunerudaeckast Teopusi paccMaTpUBaeT ra3 KaK COBOKYITHOCTH I'DOMAJHOTO HC-
Jla XaOTUYIECKU JIBUKYIIUXCS YACTHUI TEM MJIA UHBIM 00Pa30M B3aNMOJIEHCTBYIOMINX
Mex Iy coboit [2,3]. B pesymbraTe Takux B3aMMOJEHCTBUI YaCTUIBI OOMEHUBAOTCS
UMITYJIbCAMU, dHeprueil. BaanmojeiicTBue MOXKeT OCYIMIECTBISThCS IIYTEM IPSMOrO
CTOJIKHOBEHUsI JACTUIL WJIA MTPU TTOMOIIY T€X MJIA WHBIX CHIL.

Jljist I0siCHEHUST MATEMAaTHIECKOl CXEeMbI, OIMCHIBAIOIIEH 0100HbIe gBJIeHus, B [2]
PACCMATPUBAIOTCS TAK HA3BIBAEMbIE JTUCKPETHBIE MOJIETN KHHETHIECKOTO YPaBHEHMST
Boabnvana n mpuBouTcst (DEHOMEHOJIOTHIECKUi BBIBOJ, ypaBHeHUsT Bosibiivana jiist
ra30BO¥ MO/JIEJIH ¢ KOHETHBIM YNCJIOM PA3JIMIHBIX CKOPOCTEH YaCTHIL U KOHETHBIM UNC-
JIOM Pa3HbIX B3ammojeiicreuil (Mozenu tuna Bpoynsemra [1]).

BymepHasa mojiens Bpoyasesia

Oiny + cOyny = —(ngng — ning),

Opng + cOyng = —(N3ng — ning),
Oing + cOyng = —(ning — ngna),

O + cOyna = —(ning — ngna),

[ O OGN I O N I
—
—
—

(cM. Tam ke [4]) oTHOCHTCS K Kitaccy HemHTerpupyeMbix ypasrenuit. Cucrema (1) siB-
JISIeTCsl KHHETUYECKUM ypaBHeHueM BoJibIiMaHa MOJIEIbHOIO JIByMepHOro rasa [1] va-
CTUIL ABUKYIIUXCS HA JBYMEPHOI [IJIOCKOCTH, CKOPOCTH KOTOPLIX (¢, 0), (—¢,0), (0, ¢),
(0, —c) GymeMm TpesoJaraTh HAIPABJIEHHBIMH BJOJIb KOODJMHATHBIX OCed. 31ech
n1(z,y,t), n2(x,y,t), ng(z,y,t), na(z,y,t) — WIOTHOCTH (YMCIO TACTUI[ HA €UHU-
Iy IUIONIAJIU) YACTHUL, COOTBETCTBYIONINX YEThIPEX IPYIIL. Bce 4acTuipl paciupeesie-
HBI 110 YeThIPEM Ipynnam co ckopocramu (¢, 0), (—c¢,0), (0,¢), (0, —c), obmenuBaroTCst
ckopoctamu —I + I1 = I + I, mepexojisi B 9aCTHUILI TPEThbell W YeTBEPTOHl rpymm
(I+1I=1II1+1V). Aranoruasro [II + IV =1V + II] wom 111 + 1V =T+ I1,
I+I1T=1T+1,I+IV=IV4+ [, IT+1II=1IT+1I,II+1V =1V +11.

U3menenue 9ucsa 9acTUIl B TPYIIAX MOXKET IIPOUCXOIUTH TOJBKO B PE3yJIbTaTe
peakuii:

I+IT=I11T+1V, III+1IV=I+41I

Kak nokazano s [2], n; > 0,4 = 1,...,4, ecqin nHavanbubie yeaosusa n) > 0,4 = 1,...,4.
3/1ech BBIIOJIHEHBI ypaBHEHNE HEPA3PBIBHOCTH U YPABHEHUs COXPAHEHUS UMITYJIbCA.

158



Ara cucrema 0GHAPYYKUBAET HEPETYJISPHOE TTOBEJIEHAE PEIeHNH (TUCIEHHBIM 9KC-
IIEPUMEHTOM yCTaHAB/JINBAE€T HEYCTONYMBOCTb CTAITMOHAPHBIX PENIeHUil IIPU HEKOTO-
PBIX 3HAYEHUAX BHYTPEHHUX IapaMeTpon). Haima 3ajada — yCTAHOBUTH 3TO aHAJIU-
TUYECKH.

TeopeMa. Paccwzompum MaANDBLE nepuoc?u%ecnue BO03MYUWEHUA COCTNOAHUA PABHOBECUA

ny =nf +62\/n‘{1l, ng = n§ +€2\/n§ﬁ,
ng =n§ +e%\/n§, ng =n§+e2\/ngi.

Jokasicem, wmo nosodicumenvrvie cocmoanua pasrosecus (n§,ns,ng,ng), n; > 0,

€6 __ €€ € € e € 7
ning = n§ng npu ycaosuu n§ > ng, ng > nf asasromca cedaamu. Yemotivueoe
MH02000Da3UE ONPEJEAACTNCHA COOMHOWEHUAMUY <KPECTNA>

/2 JU/2
0 e — [0 e
Uk,—k"'w = Uk,k+ 172 o s ]CEZ,
ue'“zp) ve' "2

na xoapduyuermur Pypve nauarvrozo sozmywenus (u’, v0, w, 20). IIpu docmamonu-

HO 2AA0KUT HAMAAOHBT OGHHLT CMAbUAUSAUUA 6004 YCMOTMUBO20 MH020006Pa3UA
axcnonenyuaavas, m.e. cywecmeyem v = O(e) > 0, maxoe wmo

(2)

sup(|ul + Jv] + [w] +[2])(t) < Ce™",
Q
2de Q — Auelixa nepuoduUYHOCTIU.
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Oneparopsbl Ipeocdpa3oBaHUsI: HEKOTOPHIE
COBpEeMEHHbIE Pe3yJIbTaThI

C.M. CnTHuk

Benropopckuii rocygapcTeeHHbili HaLMOHANbHbIVE UCCNef0BATENLCKNIA YHUBEPCUTET
(HWY «Benl'Y»), Benropog, Poccust

A.A. Apnan
Benropopckunii rocyaapcTBeHHbI HaLMOHANbHbIT UCCNEROBATENBLCKNA YHUBEPCUTET
(HWY «BbenlY»), benropog, Poccust

M. K. Kyzocn

Benropopckuii rocygapcteeHHbili HaLMOHANbHbIVE NCCNef0BATENLCKNIA YHUBEPCUTET
(HWY «Benl'Y»), Benropog, Poccust

A.-K. XanTtxam
Benropopckunii rocynapcTBeHHbIV HaLMOHANbHbIT UCCNEROBATENBCKNA YHUBEPCUTET
(HWY «Benl'Y»), Benropog, Poccust

B noksane OyayT M3J10KeHBI HEKOTOPbBIE COBPEMEHHBIE MCCIIEIOBAHNS 10 TEOPUN
OIIepaTOPOB MPeoOPA30BAHNS U UX MPUJIOKEHUIM K TrddepeHnnabHbIM yYPaBHEHU-
aM. PaccmaTpuBaroTcst onpeiesiéHable TUIBI TudhDEPEHITNATbHBIX YPABHEHU C 0CO-
OeHHOCTAMHU B KO3 DUIIMEHTAX, OCHOBHOE BHUMAHUE yiessdeTcs auddepeHnaIbHbIM
YPaBHEHUsIM ¢ orlepaTopamu Beccesist

d? vd

Bou(z) = @u(m) xdx

B nokiazie coBpemMeHHbIe UCCIIe0BAHUS 110 TEOPUH OIIEPATOPOB MPeoOpa30BaHUS U
UX MPUIOKEHUIM K JnddbepeHIuaIbHbIM yYPABHEHUSIM PACCMATPUBAIOTCS HA OCHOBE
psijia TIOCTIEHNX TyOIMKanuii mo 3Toil remaruke, cM. [1-5]. Takum o6pasom, Teopust
OTIEPATOPOB IPe0OPA3OBAHUS U X MHOTOYHMCJIECHHBIX MPUIOKEHUI SIBIISIETCS YKUBOU
¥ aKTUBHOM BETBBIO COBpeMeHHO# maremaruku. OmeparopaM mpeoOpa3’oBaHUsS U UX
PA3JIMYHBIM TPUMEHEHUSIM [TOCBSIIEHO JOCTATOTHOE YUCIO IIyOJIUKAIUI, B TOM IUCTIE
M3/IATONNXCA MOHOTpad Uit 1 COOPHUKOB.

Crucok aureparypbl

[1] Karpaxos B.B., Curauk C. M. Meros onepaTopoB npeobpa3oBaHus U KPAeBble
3a/1a9N JJI CHHTYJISPHBIX JUTHNTHIecKux ypaBaenuii, Cospem. mam. Pyndam.
nanpasa., 64, Ne 2, 211-426 (2018).

[2] Mumxkuna . JI. O6mee ypasuenue Dittepa—Ilyaccona—lapby u runepbosmae-
ckue B-niorernnanet, Cospem. mam. Qyndam. nanpasa., 65, Ne 2, 157-338 (2019).

[3] Curnux C.M., Hlumkuna 3. JI. MeTox oneparopos npeobpazoBamust Jjis aud-
depennmaIbHbIX ypaBHeHUiT ¢ oneparopamu beccessi. — M.: @uszmaraut, 2019.

[4] Shishkina E. L., Sitnik S. M. Transmutations, Singular and Fractional Differential
Equations with Applications to Mathematical Physics. — Elsevier, Academic
Press, 2020.

[5] Ed. Kravchenko V. V., Sitnik S. M. Transmutation Operators and Applications. —
Springer, Birkh&user, 2020.
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KoanokalmmonHO-BapuaInMOHHBIN MOIXO0/T, A5
pereHns anddepeHInaIbHO-aJIredpandecKmmx
yYpaBHeHUI1

J1.C. Conoeaposa
NACTY CO PAH, NpkyTck, Poccus

M. B. BynaTos
NACTY CO PAH, Npkytck, Poccus

B moxnase pacecmoTpena 3ajgatda,
Az (t) + Bt)z(t) = £(t), 2(0) = z0, t € [0, 1],

riae A(t), B(t) — (n x n)-marpunsl, f(t) u x(f) — 3aJaHHAS ¥ UCKOMasi N-MepHBIE
BeKTOpP-pyHKIUM, 31eMenTol MaTpul, A(t), B(t) u f(t) mocrarouno riajxue, u

detA = 0.

Takue 3aa1 TPUHATO HA3BIBATDH AUMDEPEHITHATHLHO-AITEOPANIECKUMI yPaBHEe-
ausivu (JIAY). Tlpeamonaraercs;, 9T0 HavYaJIbHOE YCJIOBHE 3aJIaHO KOPPEKTHO, & W3
MCXOHON 33/1a91 U 7° €€ IPOU3BOIHBIX IIyTEM 3JIEMEHTAPHBIX ITPe0bPa30BAHUN MOXKHO
BBIJICJINTH KJIACCHIECKYIO CHCTEMY OOBIKHOBEHHBIX UMD EPEHIINATBHBIX YPABHEHUI
2 (t) + B(t)z(t) = f(t). Buauenne r UPUHATO HASHIBATH HHIEKCOM DACCMATPHBAC-
Moit 3asiatdn. MHorne n3BecTHbIe HesIBHBIE METOJIBI MOT'YT MOPOXK/JIATH HEYCTONINBBIA
MIPOTIECC WJIM TTPUHIINIINAIBHO HEePUMEeHUMBI it JTAY.

ABTOpBI JJIsT TAKUX 38J1@9 TPEJJIAralOT KOJIOKAIIMOHHO-BaPUAIMOHHBIE PA3HOCT-
HBIE CXEMBbI, KOTOPbIEe UMEIOT MPUHIUINAJIHHOE OTJIMYNE OT KJIACCAIECKUX AJTOPUT-
MoB. OmmcaH 00mMii MOAXO K CO3AHUI KOJLIOKAIMOHHO-BAPUAIMOHHBIX PA3HOCT-
HBIX CXeM, OCHOBAHHBII Ha IIOCTPOCHUH 38/[a9H MATEMATHIECKOTO IIPOIPAMMUPOBAHMS
crenuaJbHOro Bua. IIpuBeieHbl KOHKPETHBIE AJITOPUTMBI C OJIHOM U JBYMST TOUKAMU
KOJLIOKAITNU U PE3Y/IbTATHI YUCJIEHHBIX pacaeToB. /laHHOE nccaeqoBaHme mTPOI0IKAET
paborsr [1,2].

Pabora BeimostHena npu momzepxkke Poccutickoro douma GyHIaMEHTAIbHBIX UC-
caenosanuit (mpoexr 20-51-S52003).

Crnucok jaureparypsbl

[1] Bymraros M. B., Top6ynos B. K., Maproimenko FO.B., Hryen Jun Kour. Bapua-
IUOHHBIE TTOIXOIbI K TUCIEHHOMY permenuto muddepeHnuaibHo-aaredpaniecKux
ypasHeHuit, Boiuuca. mexn., 15, Ne 5, 3-14 (2010).

[2] Bulatov M.V., Solovarova L.S. Collocation-variation difference schemes for
differential-algebraic equations, Math. Methods Applied Sci., 41, Ne 18, 9048-9056
(2018).
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JImHeapm3alnusi ¢ MOMOINbIO PYHKIIMOHAJILHOTO
rnapamMerpa

[.B. Tpewes
MaTtemaTtuyecknii uHctutyT um. B. A. Creknosa Poccuiickoii akagemun Hayk, Mockea,
Poccus

PaccMoTpnM raMuIbTOHOBY CHCTEMY OKOJIO TTOJIOYKEHUS PABHOBECHUST MU CUMILIEK-
THYIECKOEe OTOOpaXKeHUEe OKOJIO HEIOJBIKHON TOYKM B (DA30BOM IPOCTPAHCTBE Pa3-
meprocTu 2n. Ilpeanosmoxkum, 910 cucreMa 3aBUCAT OT QPYHKIIMOHAJIBHOTO TapaMET-
pa, asidmonierocst GyHKIHeH n mepeMeHHbIX. V3y1yaeTcs BO3MOKHOCTD UCIIOIB30BATH
GYHKIIMOHAJIBHBIN TapaMeTp JJIs MOJTyUIeHUs] CUCTEMbI, COMPSI?KEHHOM JTMHEHHOH Ha,
OTKPBLITOM MHOXKECTBE.

KBa3zuniuneiinble ypaBHEeHNS C HECKOJbKNMU
npousBoaubiMu Pumana—J/Inysniis
B CEKTOPUAJBLHOM CJIydae

M. M. Typos

YensbuHcknii rocyaapcTeeHHblii yHusepcutet, HYensiburck, Poccus

IIycts Df — npobuast pou3BosHas Pumana—/JInyBusisa, Z — GaHaxXoBO TPO-
CTPAHCTBO, 4 — OTKPbLITOE MHOXKeCTBO B R X Z™ F : 7 — Z. PaccMOoTpuM KBa3UIU-
HellHOe ypaBHeHUe

m—1

DPz(t) =Y A;Dy () + Y BIDM () + Y Cud{2(t)+
Jj=1 =1 s=1

FF(t, DO 2(t), DX (8, ... DY (), te (0,T), (1)

mem—1<a<meNOI<y<awm<- - <o, <a m-—1<aqg<m €N,
ap—mp #Fa—m,l=12....n 0 >p>->p =20 A4 € Cl(2), j =
1,2,....m—1,B €Cl(Z),l=1,2,...,n,Cs €Cl(Z),s=1,2,...,r, T. e. Mbl UMeeM
3aMKHYTBIe JINHEHbIe olepaTops! ¢ obsactamMn oupenenerus Da,, Da,,...,Da, .,
Dg,,DpB,,...,Dp,,Dc,,Dc,,...,Dc, cOOTBETCTBEHHO, TepecedeHre KOTOPHIX IIJIOT-
HO B Z W cHAbOXKEHO CyMMOi#l HOPM rpaduKa 3THX OlepaTopoB. Pemrennem HemoaHOM
3a 1a9u Tuna Komm

D?7m+k2(t0)zzk7 k:m*,m*+1,,..,m—1, (2)

anst ypasuenns (1) na (to, t1] nmasosém rakyio dynknuio z : (to, t1] — Z, aro J" "z €
Cm((t07t1]7z) N Cnl_l([thtl];Z)v ‘]tnl_az € CJ((thtl};DAj% ] = 172a"'7m - 17
Jtn”_alz € le((t07t1};DBz)7 l=12,...,n, Jtﬂbz € C((t07t1};Dcs)7 s=1,2,...,m

u s Beex t € (to,t1] Bemommsercs Baoxkenue (t, DY ™z(t),..., DYtz (1) € Z,
BepHO paBeHcTBo (1) u BoimosHsIOTCa yeaosusa (2). 3aecs m* — nedexr 3amadu Tuna
Kommn [1], koTopslil onpezensgercs HaGOPOM YUCET (v, (1, (g, - - « 5 Qlpy .
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Teopema. [Tycmo m —1 < a < m € N, 4; € Cl(Z), j =1,2,....m—1,0 <
ap < ag << ay<am-1<a<méeN aq—m #a—m, B €
Cl(Z2),l =1,2,....n, 1 > P2 > -+ >, 20, Cs € Cl(Z), s =1,2,...,7,
(Al,AQ,...,Amfl,B]_,BQ,...,Bn,C:L,CQ,...,CT) S AZ’T(907GO), zk € D, k= m*,
m*+1,...,m—1, Z — omxpumoe muoocecmso 6 R x Z™  (tg, 0, 0, ..., 0, zp,
Zm*41y -5 Zm—1) € Z, omobpasicerue F € C(Z; D) aokarvno aunwuyeso no daso-
sbim nepemernvim. Tozda cywecmsyem maxoe t1 > to, wmo 3adaua (1), (2) umeem
eduncmeennoe pewenue Ha (to, t1].

Pabora mognep:xana rpanrom Poccuiickoro Hayaroro ¢oua, mpoext 22-21-20095.
Cnucok Jjureparypbl

[1] @emopos B. E., Typos M. M. JTedekt 3amaqn Tuna Kormmn 11st tuHeHHBIX ypaBHe-
HUI ¢ HECKOJIbKUMU NTPOu3BoaAHbIMU Pumana—J/Inysuiis, Cub. mam. srcypH., 62,

No 5, 1143-1162 (2021).

Samava Komm s ogHOrO Kjiacca ypaBHEHU
C pacIpe/ieJieHHOIl ApOoOHOI ITPOM3BOIHOIM
I'epacumoBa—KamnyTo

B. E. ®epopos

Yenabuncknii rocygapcteeHtblii yHusepcuteT, HYensabunck, Poccnsa

H.B. ®unun

YenabuHcknii rocygapcteeHtblii yHusepcutet, HYensbunck, Poccnsa

[Tycrs Z — 6anaxoBo npoctpacTso, Cl(Z) — MHOXKECTBO BCEX JIMHEHHBIX 3aMKHY-
TBIX OIIEPATOPOB, IIJIOTHO OIIPeJIeJIEHHBIX B Z, NEeHICTBYIOMNX B IPOCTPAHCTBO Z, Dy —

npobuas npoussomHas Lepacumosa—Kamyro. s w € Lq(0,b) o6ozuaaum W () :=
b

Jw(a)A¥da, Ry := Ry U{0}.
0

IMycts K > 1, a > 0, u oneparop A € CI(Z) ya0BIeTBOPSET CJIEAYIONMM YCIAOBH-
SAM:

1. upu R\ > a BeinosnHseTca Bodenue W(A) € p(A);

2. cymecrByer Takoe K > 0, uro npu Beex RN > a, n € NU {0} BbimosnHseTcs
HepaBeHCTBO

Kn!

v (=) | <t

dn

<
L(2)

B takom ciydae MBI OyJieM TOBOPHTD, YTO ONEPATOP A NPHHAJIEKUT KJIACCY

Cw (K, a) [1]. Yepes D4 6ynem 0603Ha9aTh 06JIACTD ONpeEIe/IeHus oreparopa A, cuab-

2KEHHYI0 HOPMOI1 ero rpaduka.
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Teopema. Ilycmv b € (1,2], w € L1(0,b), A € Cw(K,a) npu nexomopwzr K > 1,
a > 0; 20,21 € Da. Toeda cywecmeyem eduncmeennoe pewenue 3adawu Kowu z(0) =
20, 21 (0) = 21 dan ypasnerus ¢ pacnpedeaenoli dpobroti npouseodnoti I'epacumosa—
Kanymo

b
/w(a)Dto‘z(t)da =Az(t), t>0.
0

o penrennenm 3a1a4m Komu nonnvaerca dynknus z € C(Ry; D4)NCH(Ry; Da),
b
nust koropoit [ w(a) D z(t)da € C(Ry; Z).
0

Pabora mommepxkana Poccuiickum dormom dyHIaMEHTATBHBIX HCCICTOBAHUNA 1
BrernaMmckoit akajiemueit Hayku U TexXHOJIOTHH, TpoekT 21-51-54003.

Crnucok jaureparypsbl

[1] Fedorov V.E., Filin N.V. On strongly continuous resolving families of operators
for fractional distributed order equations, Fractal and Fractional, 5, Ne 20, 1-14
(2021).

CHeKTp CKOpOCTeI'/-’I IIOTOKOB Ha OTKPBbITBIX
n 3aMKHYTBIX IIE€IIOYKaX KaK HelIpepPbIBHbBIX
njinm JUCKPETHbIX JUWHAMHNYECKHNX CHUCTeMaXx

M. B. AwwHa
MockoBckuii aBTOMODUABHO-A0POXKHbIT FTOCYAAPCTBEHHbIA TEXHUYECKNTT YHUBEPCUTET
(MAZAW), Mockea, Poccust

A.T. TaTawes
MockoBckunii aBTOMOBNNBHO-JOPOXKHbBIVE FOCYAAPCTBEHHbIA TEXHUYECKUT YHUBEPCUTET

(MAZAW), Mockea, Poccust

B nenTpe BHUMaHWS IProJUIECKONl TEOPUH HAXOIUTCS U3YUEHUE ACUMIITOTUIE-
CKOT'O TIOBEJICHUS JUHAMWYECKAX CHCTEM Ha MHOTOooOpasusix. [Ipu onmcanmm moTokoB
Ha MHOT000Pa3usX IJIOMOTBOPHBIM SIBJISIETCST METO, ATIITPOKCUMAIINY aBTOMOP(MU3MOB
NEePUOANIECKIME TIpeobpa3oBaHusaMu, cM. [1].

Motesin aBTOMOOMIIBHOTO TpaUKa KAaK JBUXKEHUS JYACTHUI] B OJTHOM HAIIPABJICHUN
CBOJIATCS K BEPOSITHOCTHBIM METOJIAM CJIyYaflHbIX [IPOIECCOB € 3allpeTaMu 2], armpok-
CUMAITUSMHI KOTOPBIX SABJISIOTCS JUHAMUIECKIE CUCTEMBI, TOPOXK ICHHBIE UTEPAIUSIMHI
0oTOOpaXKeHuit Ha, MHOTOOOpa3UN.

Mpb1 uccenyeMm muHaMudecKue CUCTeMbl TUlla cereit Byciaesa [3], ¢ menpepbis-
HBIM IIPOCTPAHCTBOM COCTOSIHUII U HEIIPEPHIBHBIM BPEMEHEM, a TAKXKe C JUCKPETHBIM
IIPOCTPAHCTBOM COCTOSIHWM W JUCKPETHBIM BpeMeHeM. Hocuresem KOHTYpHOI ceTn
SIBJISIETCSl CHCTEMa KOHTYPOB C OOIIUMU y3JIaMU, OIPEESIONIIMI KOHMDINKTH U 3a-
JlepKKH, cM. [4]. B muckpeTHOM BapraHTe KOHTYD PasOuT Ha sTeiiKi, B KOTOPBIX PAC-
ITOJIATAIOTCS IACTHUIILI, TIEPEMEIAIONINecs 0 3aJaHHBIM MpaBWiIaM. B HempepbiBHOM
CJIydae YaCTHIbI OJHOIO KJIACTEPA NEPEMEIIAIOTCs OJHOBPEMEHHO, CM. [5].
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I/IHBapI/IaHTHbIe MHOKECTBA COCTOSIHUI CUCTEMBI SIBJISTIOTCS npeae/JTbHbIMUA IUKJIa-

MU, T.€. PEAJU3YIOTCS 3aMKHYTBbIE TPAeKTOPUH B MPOCTPAHCTBE cocrosuwmii. Mcce-
JIOBAHO TIOBEJIEHNE CUCTEM Ha MPEIeTbHBIX IHUKJIaX, UYTO MMO3BOJISET HAUTH WHBAPU-
AHTHYIO Mepy Ha IIPOCTPAHCTBE COCTOSIHHUI M CPEIHIOI0 CKOPOCTb YAaCTHI] C YIeTOM
3a/IepKeK, KOTopasl MPeJICTaBIIsgeT cOO0i BayKHEHNIYI0 XapaKTEePUCTUKY.

1]

Crnucok jaureparypsbl

Karok A.B., Crenua A. M. Annpokcumanuu B 3proJuveckoit reopuu, Yen. mam.
nayk, 22, Ne 5.81-106 (1967).

Blank M. Metric properties of discrete time exclusion type processes in continuum.
J. Stat. Phys., 140, Ne 1, 170-197 (2010).

Kozlov V. V., Buslaev A.P.; Tatashev A. G. Monotonic walks on a necklace and a
coloured dynamic vector, Int. J. Comp. Math., 92, Ne 9, 1910-1920 (2015).
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21-44 (2021).
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